Abstract:
Embodiments described herein relate to transfer of credentials between two mobile wireless devices that are within proximity of each other, via a secure local connection, or via a network-based cloud service, where the two mobile wireless devices are not in proximity to each other. Transfer of credentials can include communication between a source device, a target device, and/or one more network-based servers, which can include mobile network operator (MNO) managed servers, such as an entitlement server, a web-sheet server, an authentication server, a provisioning server, a subscription management data preparation (SM-DP+) server, a home subscriber server (HSS), and/or an authentication server, as well as third-party managed servers, such as a cloud service server and/or an identification services server. Authentication can be based at least in part on one or more tokens and/or a trust flag obtained by the source device and provided to the target device.
Abstract:
A user equipment (UE) may identify that an emergency call is being initiated and send further messages including the location of the UE. The UE receives emergency location signaling parameters, identifies that an emergency communication has been initiated by the UE based on the emergency location signaling parameters and transmits a message to an endpoint associated with emergency services based on the identification of the emergency message being initiated, wherein the message includes location information for the UE.
Abstract:
This Application sets forth techniques for binding and dynamic provisioning of international mobile equipment identifier (IMEI) values with cellular wireless service profiles, such as subscriber identity modules (SIMs) on physical SIM (pSIM) cards and electronic SIMs (eSIMs) on an embedded universal integrated circuit card (eUICC) of the mobile wireless device. When pSIMs and/or eSIMs change on the mobile wireless device, e.g., based on installation, activation, deactivation, de-installation, etc., IMEI binding logic accounts for the changes and maps IMEI values to pSIMs and/or eSIMs as required. IMEI values can be assigned based on a history of bindings between IMEI values and ICCID values of one or more eSIMS on an eUICC. A most recently used or a newly assigned IMEI value can be associated with an eSIM. Whether to assign an identical IMEI value to multiple eSIMs depends on requirements of associated cellular wireless service subscriptions.
Abstract:
The described embodiments set forth techniques for recovering one or more electronic subscriber identity modules (eSIMs) previously deleted from an embedded universal integrated circuit card (eUICC) of a mobile wireless device. Prior to deletion of an eSIM, the mobile wireless device uploads first eSIM subscription information to a cloud network services server and stores second eSIM subscription information in a secure memory of the eUICC. The mobile wireless device can subsequently download the first eSIM subscription information to verify matching to the second eSIM subscription information stored in the eUICC before displaying an option for recovering the eSIM. The mobile wireless device sends to a mobile network operator (MNO) provisioning server an eSIM recovery request notification that includes at least a portion of the first eSIM subscription information, and the MNO provisioning server provides an eSIM recovery response message indicating approval and a network address to download the eSIM.
Abstract:
Methods that are performed by a user equipment (UE) and corresponding methods of base stations that allow a UE to determine whether the UE is in a carrier aggregation enabled or disabled state. One exemplary embodiment of a method performed by a UE determines a first artificial value for a first parameter and a second artificial value for a power headroom (PHR) for a secondary component carrier (SCC), the first and second artificial values being substantially low relative to a configuration of the network, generates an artificial report including the first and second artificial values, transmits the artificial report to a primary cell providing a primary component carrier (PCC) and receives an indication that the UE is placed in a carrier aggregation disabled state.
Abstract:
Methods that are performed by a user equipment (UE) and corresponding methods of base stations that allow a UE to determine whether the UE is in a carrier aggregation enabled or disabled state. One exemplary embodiment of a method performed by a UE determines a first artificial value for a first parameter and a second artificial value for a power headroom (PHR) for a secondary component carrier (SCC), the first and second artificial values being substantially low relative to a configuration of the network, generates an artificial report including the first and second artificial values, transmits the artificial report to a primary cell providing a primary component carrier (PCC) and receives an indication that the UE is placed in a carrier aggregation disabled state.
Abstract:
This Application describes mechanisms for enterprise remote management of cellular services provided via access credentials, e.g., subscriber identity modules (SIMs) and/or electronic SIMs (eSIMs), for wireless devices. To minimize requirements for user interaction, installation and management of business-supplied cellular service profiles on the wireless device can intercept alert notifications to reduce interruptions and allow for background management of the business-supplied cellular service profiles. Additionally, a business enterprise can use multiple, distinct services to initiate installation of an eSIM to a wireless device. When two different services attempt to install eSIMs on the wireless device in parallel, management software on the wireless device can control an order of installation and disallow duplicate installations of an identical eSIM to the wireless device. The management software can also monitor eSIM installations and manage alert notifications that occur during the eSIM installation process.
Abstract:
The described embodiments set forth techniques for transferring an electronic subscriber identity module (eSIM) with the same integrated circuit card identifier (ICCID) value from a source mobile wireless device to a target mobile wireless device directly with a mobile network operator (MNO) provisioning server. The target mobile wireless device downloads the eSIM from the MNO provisioning server after deletion of the eSIM on the source mobile wireless device and reassignment of the eSIM with the same ICCID value to the target mobile wireless device.
Abstract:
A network component communicating with a user equipment (UE) and a server. The network component receives a first packet from the UE, wherein the first packet indicates to the network component that the network component is to perform operations on behalf of the UE to maintain a persistent connection, receives a second packet from the server and determines whether to transmit a signal to the UE based on the second packet received from the server. A UE having a transceiver and a processor. The UE transmits a first packet to the network component, wherein the first packet indicates to the network component that the network component is to perform operations on behalf of the UE to maintain a persistent connection, identifies an out of service (OOS) event, receives registration information from the network component and registers with the server based on the registration information received from the network component.
Abstract:
Techniques to manage updates for eSIMs of a secondary wireless device are disclosed. Responsive to a user input, expiration of a timer, receipt of a message from an associated primary wireless device, processing circuitry of the secondary wireless device commands an eUICC to update an eSIM. A secure data connection is established between the eUICC and a network provisioning server, either directly from the secondary wireless device to a cellular wireless network or relayed indirectly via the primary wireless device. The eUICC and the network provisioning server exchange messages in accordance with a BIP process to update the eSIM. The eUICC provides a status to the processing circuitry indicating success or failure for the eSIM update. Upon success, a portion of the secondary wireless device may be placed in a reduced power state. Upon failure, the eSIM update process may repeat up to a maximum number of retries.