Abstract:
A display system includes a head-mounted display unit and a wake control system. The head-mounted display unit provides content to a user and is operable in a low-power state and a high-power state that consumes more power to provide the content to the user than the low-power state. The wake control system determines when to operate in the high-power state. The wake control system may assess a first wake criterion with low power, assess a second wake criterion with higher power than the first wake criterion upon satisfaction of the first wake criterion, and cause the head-mounted display unit to operate in the high-power state upon satisfaction of the second wake criterion.
Abstract:
A display system includes a head-mounted display unit and a wake control system. The head-mounted display unit provides content to a user and is operable in a low-power state and a high-power state that consumes more power to provide the content to the user than the low-power state. The wake control system determines when to operate in the high-power state. The wake control system may assess a first wake criterion with low power, assess a second wake criterion with higher power than the first wake criterion upon satisfaction of the first wake criterion, and cause the head-mounted display unit to operate in the high-power state upon satisfaction of the second wake criterion.
Abstract:
A head-mountable display device includes a housing defining a front opening and a rear opening, a display screen disposed in the front opening, a display assembly disposed in the rear opening, a first securement strap coupled to the housing, the first securement strap including a first electronic component, a second securement strap coupled to the housing, the second securement strap including a second electronic component, and a securement band extending between and coupled to the first securement strap and the second securement strap.
Abstract:
Devices, methods and graphical user interfaces for manipulating user interfaces based on fingerprint sensor inputs are provided. While a display of an electronic device with a fingerprint sensor displays a first user interface, the device may detect movement of a fingerprint on the fingerprint sensor. In accordance with a determination that the movement of the fingerprint is in a first direction, the device allows navigating through the first user interface, and in accordance with a determination that the movement of the fingerprint is in a second direction different from the first direction, the device allows displaying a second user interface different from the first user interface on the display.
Abstract:
A tablet device determines a spatial relationship between the tablet device and a protective cover. The tablet device operates in accordance with the spatial relationship.
Abstract:
A tablet device determines a spatial relationship between the tablet device and a protective cover. The tablet device operates in accordance with the spatial relationship.
Abstract:
Devices, methods and graphical user interfaces for manipulating user interfaces based on fingerprint sensor inputs are provided. While a display of an electronic device with a fingerprint sensor displays a first user interface, the device may detect movement of a fingerprint on the fingerprint sensor. In accordance with a determination that the movement of the fingerprint is in a first direction, the device allows navigating through the first user interface, and in accordance with a determination that the movement of the fingerprint is in a second direction different from the first direction, the device allows displaying a second user interface different from the first user interface on the display.
Abstract:
A system including an audio source device having a first microphone and a first speaker for directing sound into an environment in which the audio source device is located and a wireless audio receiver device having a second microphone and a second speaker for directing sound into a user's ear. The audio source device is configured to 1) capture, using the firs microphone, speech of the user as a first audio signal, 2) reduce noise in the first audio signal to produce a speech signal, and 3) drive the first speaker with the speech signal. The wireless audio receiver device is configured to 1) capture, using the second microphone, a reproduction of the speech produced by the first speaker as a second audio signal and 2) drive the second speaker with the second audio signal to output the reproduction of the speech.
Abstract:
A display system includes a head-mounted display unit and a wake control system. The head-mounted display unit provides content to a user and is operable in a low-power state and a high-power state that consumes more power to provide the content to the user than the low-power state. The wake control system determines when to operate in the high-power state. The wake control system may assess a first wake criterion with low power, assess a second wake criterion with higher power than the first wake criterion upon satisfaction of the first wake criterion, and cause the head-mounted display unit to operate in the high-power state upon satisfaction of the second wake criterion.
Abstract:
A system including an audio source device having a first microphone and a first speaker for directing sound into an environment in which the audio source device is located and a wireless audio receiver device having a second microphone and a second speaker for directing sound into a user's ear. The audio source device is configured to 1) capture, using the first microphone, speech of the user as a first audio signal, 2) reduce noise in the first audio signal to produce a speech signal, and 3) drive the first speaker with the speech signal. The wireless audio receiver device is configured to 1) capture, using the second microphone, a reproduction of the speech produced by the first speaker as a second audio signal and 2) drive the second speaker with the second audio signal to output the reproduction of the speech.