Abstract:
An electronic device may be provided with electrical components mounted in a housing. The electronic device may include wireless transceiver circuitry and antenna structures. A display may be mounted in the housing. The display may have a transparent layer such as display cover layer. The display cover layer may have an inner surface with a recess. The recess may be a groove that runs along a peripheral edge of the display cover layer. An antenna structure such as an inverted-F antenna resonating element may be formed from a metal trace on a plastic support structure. The metal trace and support structure may be mounted in the groove with adhesive. The housing may be a metal housing that forms an antenna ground. Springs may be used in forming an antenna feed and an antenna return path that couples the antenna resonating element to ground.
Abstract:
An electronic device may have a conductive housing with an antenna window. Antenna structures may be mounted adjacent to the antenna window. The antenna structures may have a dielectric carrier. Patterned metal antenna traces may be formed on the surface of the dielectric carrier. A proximity sensor may be formed from a flexible printed circuit mounted on the dielectric carrier. The flexible printed circuit may have a tail that contains a transmission line for feeding the antenna structures. The transmission line may include a positive signal conductor that is maintained at a desired distance from the conductive housing using a polymer sheet. A portion of the antenna structures may protrude between a microphone and a camera module. Plastic camera module housing structures may have an inner surface coated with a shielding metal. A U-shaped conductive fabric layer may be used as a grounding structure.
Abstract:
An electronic device may be provided with wireless circuitry. The wireless circuitry may include a pair of antennas. The antennas may be formed from inverted-F antenna resonating elements located along one of the peripheral edges of a device housing. The housing may be formed of metal and may serve as an antenna ground for the antennas. The antennas may be used to receive satellite navigation system signals that are processed by a satellite navigation system receiver. An orientation sensor may be used to gather information on the orientation of the electronic device relative to the Earth. Information on received signal strength may be obtained from the satellite navigation system receiver. Based on orientation information or received signal strength information or other information, switching circuitry may be adjusted to switch an optimum one of the antennas into use or phase shifter circuitry may be adjusted to optimize signal reception.
Abstract:
An electronic device may be provided with hybrid planar inverted-F slot antennas and indirectly fed slot antennas. A hybrid antenna may be used to form a dual band wireless local area network antenna. An indirectly fed slot antenna may be use to form a cellular telephone antenna. Antenna slots may be formed in a metal electronic device housing wall. The housing wall may have a planar rear portion and sidewall portions that extend upwards from the planar rear portion. The slots may have one or more bends. A hybrid antenna may have a slot antenna portion and a planar inverted-F antenna portion. The planar inverted-F antenna portion may have a metal resonating element patch that is supported by a support structure. The support structure may be a plastic speaker box containing a speaker driver that is not overlapped by the metal resonating element patch.
Abstract:
An electronic device may be provided with antenna structures. The antenna structures may be formed using a dielectric carrier structure. The antenna structures may have first and second loop antenna resonating elements. The first loop antenna resonating element may indirectly feed the second loop antenna resonating element. The second loop antenna resonating element may be a distributed loop element formed from multiple antenna resonating element subloops. The second loop antenna resonating element may be formed from a strip of metal with a width that loops around the dielectric carrier. An opening in the metal may separate first and second subloop antenna resonating elements from each other in the second loop antenna resonating element. Openings in the metal may form metal segments that collectively form an inductance for the first subloop. Antenna currents may flow through metal traces on the carrier and portions of an electronic device housing wall.
Abstract:
An electronic device may be provided with hybrid planar inverted-F slot antennas and indirectly fed slot antennas. A hybrid antenna may be used to form a dual band wireless local area network antenna. An indirectly fed slot antenna may be use to form a cellular telephone antenna. Antenna slots may be formed in a metal electronic device housing wall. The housing wall may have a planar rear portion and sidewall portions that extend upwards from the planar rear portion. The slots may have one or more bends. A hybrid antenna may have a slot antenna portion and a planar inverted-F antenna portion. The planar inverted-F antenna portion may have a metal resonating element patch that is supported by a support structure. The support structure may be a plastic speaker box containing a speaker driver that is not overlapped by the metal resonating element patch.
Abstract:
An electronic device may be provided with electrical components mounted in a housing. The electronic device may include wireless transceiver circuitry and antenna structures. A display may be mounted in the housing. The display may have a transparent layer such as display cover layer. The display cover layer may have an inner surface with a recess. The recess may be a groove that runs along a peripheral edge of the display cover layer. An antenna structure such as an inverted-F antenna resonating element may be formed from a metal trace on a plastic support structure. The metal trace and support structure may be mounted in the groove with adhesive. The housing may be a metal housing that forms an antenna ground. Springs may be used in forming an antenna feed and an antenna return path that couples the antenna resonating element to ground.
Abstract:
An electronic device may be provided with a satellite positioning system slot antenna. The slot antenna may include a slot in a metal housing. The slot may be directly fed or indirectly fed. In indirectly fed configurations, the antenna may include a near-field-coupled antenna feed structure that is near-field coupled to the slot. The near-field-coupled antenna feed structure may be formed from a planar metal structure. The planar metal structure may be a metal patch that overlaps the slot and that has a leg that protrudes towards the metal housing. A positive antenna feed terminal may be coupled to the leg and a ground antenna feed terminal may be coupled to the metal housing.
Abstract:
An electronic device may have a conductive housing with an antenna window. Antenna structures may be mounted adjacent to the antenna window. The antenna structures may have a dielectric carrier. Patterned metal antenna traces may be formed on the surface of the dielectric carrier. A proximity sensor may be formed from a flexible printed circuit mounted on the dielectric carrier. The flexible printed circuit may have a tail that contains a transmission line for feeding the antenna structures. The transmission line may include a positive signal conductor that is maintained at a desired distance from the conductive housing using a polymer sheet. A portion of the antenna structures may protrude between a microphone and a camera module. Plastic camera module housing structures may have an inner surface coated with a shielding metal. A U-shaped conductive fabric layer may be used as a grounding structure.
Abstract:
An electronic device may be provided with antennas. Antennas for the electronic device may be formed from slot antenna structures. A slot antenna structure may be formed from portions of a metal housing for an electronic device. The slots of the slot antenna structures may be indirectly fed to form first and second indirectly fed slot antennas. The first and second indirectly fed slot antennas may be formed from slots in a rear surface of an electronic device and a sidewall of the electronic device. The slots may have open ends along an edge of the sidewall and may have closed ends that face each other. A hybrid antenna may also be formed in the electronic device.