Abstract:
A machine learning system may automatically produce classifier algorithms and configuration parameters by selecting them into a set of predetermined unitary algorithms and associated parametrization values. Multiple digital representations of input object items may be produced by varying the position and orientation of the object to be classified and/or of the sensor to capture a digital representation of the object, and/or by varying a physical environment parameter which changes the digital representation capture of the object by the sensor. A robot arm or a conveyor may vary the object and/or the sensor positions and orientations. The machine learning system may employ generic programming to facilitate the production of classifiers suitable for the classification of multiple digital representations of input object items. The machine learning system may automatically generate reference template signals as configuration parameters for the unitary algorithms to facilitate the production of classifiers suitable for the classification of multiple digital representations of input object items.
Abstract:
The present application concerns the visual identification of materials or documents for tracking or authentication purposes.It describes methods to automatically authenticate an object by comparing some object images with reference images, the object images being characterized by the fact that visual elements used for comparison are non-disturbing for the naked eye. In some described approaches it provides the operator with visible features to locate the area to be imaged. It also proposes ways for real-time implementation enabling user friendly detection using mobile devices like smart phones.
Abstract:
New authentication features are proposed that are visible, can be authenticated with a mobile equipment and yet are challenging to counterfeit. In a possible embodiment, the surface of the authentication feature may have three-dimensional characteristics, which can be recognized by a handheld camera, such as a smartphone camera, while it cannot be easily reproduced by a simple scan and print procedure. In a further possible embodiment, at least two different viewpoints of the authentication feature may be acquired using a smartphone camera and the resulting images may be analyzed using the smartphone processor to identify the three-dimensional characteristics of the authentication feature. The manufacturing of the feature may be performed at a low cost by embossing the three dimensional structure on a surface. The authentication feature may be carried by a self-adhesive label or directly embedded on the product packaging.
Abstract:
New authentication features are proposed that are visible, can be authenticated with a mobile equipment and yet are challenging to counterfeit. In a possible embodiment, the surface of the authentication feature may have three-dimensional characteristics, which can be recognized by a handheld camera, such as a smartphone camera, while it cannot be easily reproduced by a simple scan and print procedure. In a further possible embodiment, at least two different viewpoints of the authentication feature may be acquired using a smartphone camera and the resulting images may be analyzed using the smartphone processor to identify the three-dimensional characteristics of the authentication feature. The manufacturing of the feature may be performed at a low cost by embossing the three dimensional structure on a surface. The authentication feature may be carried by a self-adhesive label or directly embedded on the product packaging.
Abstract:
A Biological Neural Network (BNN) core unit comprising a neural cell culture, an input stimulation unit, an output readout unit may be controlled through its various life cycles to provide data processing functionality. An automation system comprising an environmental and chemical controller unit adapted to operate with the BNN stimulation and readout data interfaces facilitates the monitoring and adaptation of the BNN core unit parameters. Pre-processing and post-processing of the BNN interface signals may further facilitate the training and reinforcement learning by the BNN. Multiple BNN core units may also be assembled together as a stack. The proposed system provides a BNN Operating System as a core component for a wetware server to receive, process and transmit data for different client applications without exposing the BNN core unit components to the client user while requiring significantly less energy than conventional silicon-based hardware and software information processing for high-level cognitive computing tasks.
Abstract:
The present application concerns the visual identification of materials or documents for tracking or authentication purposes.It describes methods to automatically authenticate an object by comparing some object images with reference images, the object images being characterized by the fact that visual elements used for comparison are non-disturbing for the naked eye. In some described approaches it provides the operator with visible features to locate the area to be imaged. It also proposes ways for real-time implementation enabling user friendly detection using mobile devices like smart phones.
Abstract:
The present application concerns the visual identification of materials or documents for tracking or authentication purposes. It describes methods to automatically authenticate an object by comparing some object images with reference images, the object images being characterized by the fact that visual elements used for comparison are non-disturbing for the naked eye. In some described approaches it provides the operator with visible features to locate the area to be imaged. It also proposes ways for real-time implementation enabling user friendly detection using mobile devices like smart phones.
Abstract:
The present application concerns the visual identification of materials or documents for tracking or authentication purposes. It describes methods to automatically authenticate an object by comparing some object images with reference images, the object images being characterized by the fact that visual elements used for comparison are non-disturbing for the naked eye. In some described approaches it provides the operator with visible features to locate the area to be imaged. It also proposes ways for real-time implementation enabling user friendly detection using mobile devices like smart phones.
Abstract:
The present application concerns the visual identification of materials or documents for tracking or authentication purposes.It describes methods to automatically authenticate an object by comparing some object images with reference images, the object images being characterized by the fact that visual elements used for comparison are non-disturbing for the naked eye. In some described approaches it provides the operator with visible features to locate the area to be imaged. It also proposes ways for real-time implementation enabling user friendly detection using mobile devices like smart phones.
Abstract:
The present application concerns the visual identification of materials or documents for tracking or authentication purposes. It describes methods to automatically authenticate an object by comparing some object images with reference images, the object images being characterized by the fact that visual elements used for comparison are non-disturbing for the naked eye. In some described approaches it provides the operator with visible features to locate the area to be imaged. It also proposes ways for real-time implementation enabling user friendly detection using mobile devices like smart phones.