Abstract:
Provided is an element structure whereby it is possible to produce a silicon-germanium light-emitting element enclosing an injected carrier within a light-emitting region. Also provided is a method of manufacturing the structure. Between the light-emitting region and an electrode there is produced a narrow passage for the carrier, specifically, a one-dimensional or two-dimensional quantum confinement region. A band gap opens up in this section due to the quantum confinement, thereby forming an energy barrier for both electrons and positive holes, and affording an effect analogous to a double hetero structure in an ordinary Group III-V semiconductor laser. Because no chemical elements other than those used in ordinary silicon processes are employed, the element can be manufactured inexpensively, simply by controlling the shape of the element.
Abstract:
An analyzing apparatus includes a result-data storing unit that determines whether result data that is calculated as a result of analysis is restorable by linear interpolation. If the result data is determined to be unrestorable by the linear interpolation, the result-data storing unit stores the result data in a predetermined storage unit. Moreover, the analyzing apparatus includes a data restoring unit that reads the result data from the storage unit. The data restoring unit performs the linear interpolation using the result data acquired, thereby restoring the result data.
Abstract:
An IBIS correction tool which can be used assembled in a waveform simulation device and corrects IBIS data for a certain specific power supply voltage V0 to IBIS data for a desired power supply voltage V1 with a higher precision than the past, that is, an IBIS correction tool configured so as to read IBIS data for a power supply voltage V0 as numerical data of x-y coordinates at a data input unit, find a relative ratio (correction coefficient) between this numerical data and numerical data for a power supply voltage V1 on its x-y coordinates at a correction coefficient calculating unit, and obtain corrected IBIS data corrected for the power supply voltage V1 according to that correction coefficient at a corrected IBIS data generating unit.
Abstract:
An n-type TFT and a p-type TFT are realized by selectively changing only a cover coat without changing a TFT material using an equation for applying the magnitude of a difference in the Fermi energy between an interface of semiconductor and an electrode and between an interface of semiconductor and insulator. At this time, in order to configure a predetermined circuit, the process is performed, as a source electrode and a drain electrode of the p-type TFT and a source electrode and a drain electrode of the n-type TFT being connected all, respectively, and an unnecessary interconnection is cut by irradiating light using a scanning laser exposure apparatus or the like.
Abstract:
An inexpensive multilayer wiring circuit board capable of conducting high frequency switching operation on the circuit while the generation of high frequency noise is being suppressed by reducing the inductance of the circuit in provided. A multilayer wiring circuit board comprising: an uppermost layer designated as a first layer on which parts are mounted; a second layer on which one of a ground layer and an electric power source layer is arranged; a third layer on which the other is arranged; and an insulating layer arranged between the ground layer and the electric power source layer. A resin layer having a thermoplastic adhesion property on both faces is used as material of the insulating layer arranged between the electric power source layer and the ground layer.
Abstract:
A method for producing a semiconductor device which comprises causing a dopant present in a semiconductor substrate to segregate in the surface of said semiconductor substrate, thereby forming a thin layer which has a higher dopant concentration than said substrate. The thin layer formed by segregation prevents punch-through which occurs as the result of miniaturization of MOSFET. This method permits economical delta doping without sacrificing the device characteristics.
Abstract:
A method of manufacturing a thin-film transistor device improves performance of a complementary TFT circuit incorporated in a thin- and light-weighted image display device or a flexible electronic device, and reduces power consumption manufacturing cost. Electrodes forming n-type and p-type TFTs and an organic semiconductor are made of the same material in both types of TFT by a solution-process and/or printable process method. A first polarizable thin-film is formed on an interface between a gate insulator and a semiconductor, and a second polarizable thin film provided on an interface between source and drain electrodes and the semiconductor film. A complementary thin-film transistor device is manufactured by selectively exposing either the n-type TFT area or the p-type TFT area to light to remove the polarizing function from the first and second polarizable thin films.
Abstract:
Disclosed are a method for inexpensively reducing the contact resistance between an electrode and an organic semiconductor upon a p-type operation of the organic semiconductor; and a method for inexpensively operating, as an n-type semiconductor, an organic semiconductor that is likely to work as a p-type semiconductor. In addition, also disclosed are a p-cannel FET, an n-channel FET, and a C-TFT which can be fabricated inexpensively. Specifically, a p-type region and an n-type region is inexpensively prepared on one substrate by arranging an organic semiconductor that is likely to work as a p-type semiconductor in a p-channel FET region and an n-channel FET region of a C-TFT; and arranging a self-assembled monolayer between an electrode and the organic semiconductor in the n-channel FET region, which self-assembled monolayer is capable of allowing the organic semiconductor to work as an n-type semiconductor.
Abstract:
A method for determining the combination of the electrode and organic semiconductor with improved electron injection efficiency and hole injection efficiency in an organic TFT is provided, two types of FETS, that is, an n channel FET and a p channel FET are realized, and further, a complementary TFT (CTFT) is provided. The method for obtaining the vacuum level shift at the electrode metal/organic semiconductor interface from physical constants of constituent elements of the electrode and the organic semiconductor is provided. By changing the electrode metal through an electrochemical method, the electrodes whose electron injection and hole injection can be controlled are formed. By using these electrodes, two types of FETs such as an n channel FET and a p channel FET are realized, thereby providing a complementary TFT (CTFT).
Abstract:
An IBIS correction tool which can be used assembled in a waveform simulation device and corrects IBIS data for a certain specific power supply voltage V0 to IBIS data for a desired power supply voltage V1 with a higher precision than the past, that is, an IBIS correction tool configured so as to read IBIS data for a power supply voltage V0 as numerical data of x-y coordinates at a data input unit, find a relative ratio (correction coefficient) between this numerical data and numerical data for a power supply voltage V1 on its x-y coordinates at a correction coefficient calculating unit, and obtain corrected IBIS data corrected for the power supply voltage V1 according to that correction coefficient at a corrected IBIS data generating unit.