摘要:
Provided are a magnet structure and the like capable of changing a magnetic force line distribution on a surface of a target to thereby achieve wide erosion of a target, using a simple drive mechanism. A magnet structure (110) comprises a main magnet (10, 13) disposed at a reverse surface (20B) side of a target (20) to produce a main magnetic force line reaching an obverse surface (20A) of the target, an adjustment magnet (11) disposed at the reverse surface (20B) side of the target (20) to produce an adjustment magnetic force line for changing a magnetic flux density distribution produced by the main magnetic force line, a magnetic path (21A, 21B, 24) of the adjustment magnetic force line which is disposed at the reverse surface (20B) side of the target 20, and a magnetic field adjustment means (12, 14) configured to be able to change strength of the adjustment magnetic force line passing through inside of the magnetic path (21A, 21B, 24).
摘要:
The present invention provides a vacuum chamber capable of simplifying the structure of the arrangement of a cooling passage. The vacuum chamber of the present invention includes a plurality of wall members, the plurality of the wall members are connected to each other to construct a chamber main body by connection portions where connection surfaces each of which is part of a surface of each wall member are hermetically connected to each other, and at least part of the connection portions are built-in gap type connection portions each of which has a gap extending along the corresponding connection surfaces inside the connection surfaces and in which peripheries of the connection surfaces are hermetically connected to each other by welding.
摘要:
A laser fusion bonding apparatus includes a laser beam irradiation unit for emitting a laser beam with which portions of two works which are in contact with or close to each other are irradiated, and thereby fusion bonded. The laser beam is a substantially-parallel laser beam.
摘要:
A magnet structure and the like are provided, which can reduce the labor required to make a magnet design for producing a tunnel-shaped leakage magnetic field for plasma confinement in a well-balanced manner over an obverse surface of a target, based on a quadridirectional magnetic field produced by magnetic interaction between plural magnets. The magnet structure (110) includes: inner and outer magnets (10 and 13) positioned at a reverse surface side of a target (20) to have different magnetic moment orientations for producing a first magnetic force line reaching an obverse surface (20A) of the target (20); a pair of intermediate magnets (11 and 12) positioned at the reverse surface side of the target (20) and between the inner and outer magnets (10 and 13) to have different magnetic moment orientations, for producing a second magnetic force line acting to cancel a widthwise magnetic flux density component which is produced by the first magnetic force line; and a magnetic member (24) positioned at the reverse surface side of the target (20) to guide the second magnetic force line emanating from an end surface of one of the pair of intermediate magnets (11 and 12) into an end surface of the other, the magnetic member (24) being configured to produce a magnetic force line reaching an intermediate point in a thickness direction of the target (20) in association with the inner magnet (10) or the outer magnet (13).
摘要:
A magnet structure and the like are provided, which can reduce the labor required to make a magnet design for producing a tunnel-shaped leakage magnetic field for plasma confinement in a well-balanced manner over an obverse surface of a target, based on a quadridirectional magnetic field produced by magnetic interaction between plural magnets. The magnet structure (110) includes: inner and outer magnets (10 and 13) positioned at a reverse surface side of a target (20) to have different magnetic moment orientations for producing a first magnetic force line reaching an obverse surface (20A) of the target (20); a pair of intermediate magnets (11 and 12) positioned at the reverse surface side of the target (20) and between the inner and outer magnets (10 and 13) to have different magnetic moment orientations, for producing a second magnetic force line acting to cancel a widthwise magnetic flux density component which is produced by the first magnetic force line; and a magnetic member (24) positioned at the reverse surface side of the target (20) to guide the second magnetic force line emanating from an end surface of one of the pair of intermediate magnets (11 and 12) into an end surface of the other, the magnetic member (24) being configured to produce a magnetic force line reaching an intermediate point in a thickness direction of the target (20) in association with the inner magnet (10) or the outer magnet (L3).