摘要:
A coated sheet-like plastics material comprising a) as base, a thermoplastic substrate; and b) on the base, a photocatalytically active coating comprising a water-spreading layer which involves either a sol-adhesion-promoter layer, layer b1+2), comprising an adhesion promoter and a colloid sol, or a colloid-sol layer b2) arranged on an adhesion-promoter layer b1) applied on the substrate a), and a photocatalytically active layer b3) arranged on the water-spreading layer b1+2) or b2), where b3) is obtainable through application and drying of a mixture comprising, based on the solids content of the mixture in percent by weight b31) from 1 to 25% of titanium dioxide and b32) from 75 to 99% of silicon dioxide and/or of a metal oxide which is not soluble in water or of an anionically modified silicon dioxide or metal oxide; where the titanium dioxide is particulate with an average primary-particle size smaller than 10 nm. In-line process for producing said material, and also use as roofing material or as glazing material, preferably in areas with moist conditions. The coated sheet-like plastics material of the invention combines water-spreading properties with photocatalytic activity, without any damage to the thermoplastic substrates. The coated sheet-like plastics substrate of the invention is produced in a relatively uncomplicated, inexpensive and fast in-line process and, in use, provides impressive substrate stability and impressive effectiveness of the coating in resisting initial algal growth.
摘要:
An extrusion die has a distributing tool; a profiling nozzle; and at least three melt-flow ducts; a first melt-flow duct is routed around a second melt-flow duct or the distributing tool using a branch and is merged again downstream from the branch; and a third melt-flow duct opens into the second melt-flow duct. The extrusion die is suitable for extrusion of a hollow-chamber profiled panel of a thermoplastic plastic with a layered structure which comprises a top and bottom layer of a first plastic melt; and an intermediate layer of a second plastic melt disposed in an interior of a hollow chamber profile. The first plastic melt is allocated to the first melt-flow duct and to the second melt-flow duct and the second plastic melt is allocated to the third melt-flow duct. During the extrusion the second plastic melt is deposited onto the first plastic melt upstream from or in the region of the branch, and a distribution of the deposited second plastic melt is regulated using the distributing tool. The second melt-flow duct conveying the first plastic melt and the deposited second plastic melt is then merged with the first melt-flow duct in the profiling nozzle, whereupon the first plastic melt from the first melt-flow duct is deposited on the second plastic melt from the second melt flow duct, to sandwich the second plastic melt between two layers of the first plastic melt; and the united plastic melts are shaped to the hollow-chamber profiled panel during ejection from the profiling nozzle.
摘要:
A process for the production of a translucent, IR-reflective plastic element, consisting entirely or at least in part of an impact-resistant, thermoplastic plastic, containing IR-reflective particles made of a lamellar-shaped carrier pigments coated with a metal oxide and the plastic element made therefrom.
摘要:
A coating agent for producing scratch-resistant coatings on plastic articles, which comprises: (1) 1-30 wt. % of a prepolymer, as a thickener (IP thickener), which prepolymer is bound in the composition of the coating by polymerization; (2) 20-80 wt. % of multifunctional acrylates, multifunctional methacrylates or mixtures thereof; (3) 5-75 wt. % of a thinner; (4) 0.01-10 wt. % of a UV-initiator; (5) 0-20 wt. % of customary additives; wherein the prepolymer (1) is obtained by radical polymerization of: (a) 90-99 wt. % of C.sub.1 -C.sub.8 -alkyl esters of acrylic- or methacrylic acid; and (b) 1-10 wt. % of a sulfur-containing regulator having at least three thiol groups. The coating system is distinguished by high scratch-resistance and good weatherability.
摘要:
A process for the production of a translucent, IR-reflective plastic element, consisting entirely or at least in part of an impact-resistant, thermoplastic plastic, containing IR-reflective particles made of a lamellar-shaped carrier pigments coated with a metal oxide and the plastic element made therefrom.
摘要:
A process for the production of a translucent, IR-reflective plastic element, consisting entirely or at least in part of an impact-resistant, thermoplastic plastic, containing IR-reflective particles made of a lamellar-shaped carrier pigments coated with a metal oxide and the plastic element made therefrom.
摘要:
A coated sheet-like plastics material comprising a) as base, a thermoplastic substrate; and b) on the base, a photocatalytically active coating comprising a water-spreading layer which involves either a sol-adhesion-promoter layer, layer b1+2), comprising an adhesion promoter and a colloid sol, or a colloid-sol layer b2) arranged on an adhesion-promoter layer b1) applied on the substrate a), and a photocatalytically active layer b3) arranged on the water-spreading layer b1+2) or b2), where b3) is obtainable through application and drying of a mixture comprising, based on the solids content of the mixture in percent by weight b31) from 1 to 25% of titanium dioxide and b32) from 75 to 99% of silicon dioxide and/or of a metal oxide which is not soluble in water or of an anionically modified silicon dioxide or metal oxide; where the titanium dioxide is particulate with an average primary-particle size smaller than 10 nm. In-line process for producing said material, and also use as roofing material or as glazing material, preferably in areas with moist conditions. The coated sheet-like plastics material of the invention combines water-spreading properties with photocatalytic activity, without any damage to the thermoplastic substrates. The coated sheet-like plastics substrate of the invention is produced in a relatively uncomplicated, inexpensive and fast in-line process and, in use, provides impressive substrate stability and impressive effectiveness of the coating in resisting initial algal growth.