摘要:
The invention relates to methods and instruments for the rapid detection and rapid mass spectrometric identification of microbial infective agents in blood or other body fluids. The invention recognizes that blood is not a good environment for the cultivation of microbes and provides a method which (a) largely destroys or dissolves the human particles in body fluids, such as erythrocytes and leukocytes in blood, without impairing the ability of the microbes to reproduce, (b) separates the microbial pathogens from the fluid, (c) cultivates them in a nutrient broth which contains none of the antimicrobial components of the body fluids, (d) separates them from the nutrient broth, and (e) identifies the microbes by a mass spectrum of the microbial proteins. The dissolution of the human particles also releases the microbes nesting in macrophages. The cultivation in an optically clear nutrient broth with optimum composition not only accelerates the propagation of the microbes compared to all other cultivation methods, but also makes it possible to continuously measure their quantitative growth starting from a low microbe density. This firstly allows the mass spectrometric identification to be carried out at the earliest possible time, secondly provides a positive detection of microbes far ahead of their identification, which can be lifesaving for the patient; and thirdly makes it possible to start the determination of resistances early.
摘要:
The present invention relates to graphic presentations of complex analytical data strings containing each a multitude of substance-representing peaks (e.g. mass spectra or chromatograms) and pattern recognition or classification techniques in collections of such data strings. The invention proposes to highlight, after execution of the pattern recognition or classification algorithms, the significantly participating peaks in the graphical display so that the nature of these peaks, and the substances represented by these peaks, can easily be further investigated. The content of the graphical display, particularly the peaks, can be interactively accessed by the user and by the pattern recognition programs.
摘要:
The workloads (Z, ZS, ZS(X), gn1) of a microprocessor system (MPS), of all signaling channels (D) to the connected communication terminal equipment units (KE) and of a memory element pool (SEP) are measured in subscriber line modules (SLMO) of a communication system (KS). The measured workloads are compared to predetermined workload limits (GZ, GZS, gzn1), and an overload of a subscriber line module (SLMO) is recognized dependent on the comparison results. Designational or summary, fast-acting countermeasures can be initiated on the basis of the early recognition of at least two overloads.
摘要:
The invention relates to methods and instruments for the rapid detection and rapid mass spectrometric identification of microbial infective agents in blood or other body fluids. The invention recognizes that blood is not a good environment for the cultivation of microbes and provides a method which (a) largely destroys or dissolves the human particles in body fluids, such as erythrocytes and leukocytes in blood, without impairing the ability of the microbes to reproduce, (b) separates the microbial pathogens from the fluid, (c) cultivates them in a nutrient broth which contains none of the antimicrobial components of the body fluids, (d) separates them from the nutrient broth, and (e) identifies the microbes by a mass spectrum of the microbial proteins. The dissolution of the human particles also releases the microbes nesting in macrophages. The cultivation in an optically clear nutrient broth with optimum composition not only accelerates the propagation of the microbes compared to all other cultivation methods, but also makes it possible to continuously measure their quantitative growth starting from a low microbe density. This firstly allows the mass spectrometric identification to be carried out at the earliest possible time, secondly provides a positive detection of microbes far ahead of their identification, which can be lifesaving for the patient; and thirdly makes it possible to start the determination of resistances early.
摘要:
A first base station, which is coupled to a first switching system part is set up within radio range of a second base station, which is coupled to a second switching system part. After initial synchronization of the first base station to the first switching system part and of the second base station to the second switching system part, the second base station receives radio frames transmitted from the first base station and determines their time error with respect to its own radio frame clock. The determined time error is then transmitted to the second switching system part. In response to this, the second switching system part transmits a synchronization signal to the second base station, with the transmission time being chosen as a function of the transmitted time error such that the radio frame clock of the second base station is synchronized with the radio frames of the first base station by time alignment with the synchronization signal.