Abstract:
A method and apparatus for including in a processor instructions for performing multiply-add operations on packed data. In one embodiment, a processor is coupled to a memory. The memory has stored therein a first packed data and a second packed data. The processor performs operations on data elements in said first packed data and said second packed data to generate a third packed data in response to receiving an instruction. At least two of the data elements in this third packed data storing the result of performing multiply-add operations on data elements in the first and second packed data.
Abstract:
A method and apparatus for including in a processor instructions for performing multiply-add operations on packed data. In one embodiment, a processor is coupled to a memory. The memory has stored therein a first packed data and a second packed data. The processor performs operations on data elements in said first packed data and said second packed data to generate a third packed data in response to receiving an instruction. At least two of the data elements in this third packed data storing the result of performing multiply-add operations on data elements in the first and second packed data.
Abstract:
A method and apparatus for including in a processor instructions for performing multiply-add operations on packed data. In one embodiment, a processor is coupled to a memory. The memory has stored therein a first packed data and a second packed data. The processor performs operations on data elements in said first packed data and said second packed data to generate a third packed data in response to receiving an instruction. At least two of the data elements in this third packed data storing the result of performing multiply-add operations on data elements in the first and second packed data.
Abstract:
A method and apparatus for multiple parallel multiplications of multiple packed data using a single multiplier is provided. Given multiple packed data as multiplicand blocks and as multiplier blocks, an early-out zero-skip feature examines a multiplicand block to be multiplied to determine if the multiplicand block consists of all zeros. If the multiplicand block consists of all zeros, then the corresponding multiplication is skipped. The early-out zero skip multiplier also examines the most significant bits of a multiplier block to be multiplied to determine if the most significant bits consist of all zeros. If the most significant bits of the multiplier block to be multiplied consist of all zeros, then the multiplicand block is multiplied with only the least significant bits of the corresponding multiplier block. Otherwise, if the most significant bits of the multiplier block consist of both zeros and ones, then the corresponding multiplicand block is multiplied with the entire multiplier block.
Abstract:
A method and apparatus for including in a processor instructions for performing multiply-add operations on packed data. In one embodiment, a processor is coupled to a memory. The memory has stored therein a first packed data and a second packed data. The processor performs operations on data elements in said first packed data and said second packed data to generate a third packed data in response to receiving an instruction. At least two of the data elements in this third packed data storing the result of performing multiply-add operations on data elements in the first and second packed data.
Abstract:
A method and apparatus for including in a processor instructions for performing multiply-add operations on packed data. In one embodiment, a processor is coupled to a memory. The memory has stored therein a first packed data and a second packed data. The processor performs operations on data elements in said first packed data and said second packed data to generate a third packed data in response to receiving an instruction. At least two of the data elements in this third packed data storing the result of performing multiply-add operations on data elements in the first and second packed data.
Abstract:
A method and apparatus for including in a processor instructions for performing multiply-add operations on packed data. In one embodiment, a processor is coupled to a memory. The memory has stored therein a first packed data and a second packed data. The processor performs operations on data elements in said first packed data and said second packed data to generate a third packed data in response to receiving an instruction. At least two of the data elements in this third packed data storing the result of performing multiply-add operations on data elements in the first and second packed data.
Abstract:
A method for detecting overflow in an add operation on first and second decoded bit-vectors is provided, the method including generating a one-ahead vector using the first decoded bit-vector. The method also includes selecting an overflow bit from bits of the one-ahead vector using the second decoded bit-vector.