Abstract:
The present invention relates to a method of manufacturing a printed wiring board (PWB) of the type depicted in FIG. 1. Such a PWB comprises a first substrate and alternating layers of a second substrate and a metal layer. The layer 2 metallization of the PWB is a thick layer of a composite engineered metal material having a configurable coefficient of thermal expansion (CTE) to provide CTE matching with respect to radio frequency (RF) components mounted on the PWB, and having substantial heat dissipation properties to dissipate heat generated by the RF components. This composite metal layer also provides a ground plane for the RF components.
Abstract:
A monolithic thin film variable power divider is disclosed for variable power level distribution. The thin film power divider includes a substrate having a main surface, a first stage and a second stage, each formed as thin film networks on the main surface of the substrate. The first stage includes a plurality of transmission lines, at least one of the transmission lines having a variable dielectric deposition layer providing variable power level distribution. The variable dielectric deposition is a paraelectric, such as Barium-Strontium-Titanate. The second stage includes a hybrid combiner. The thin film power divider is capable of operating at frequencies extending into the millimeter wave spectrum. The thin film power divider provides a cost effective device that varies the balance of power through a multiport RF distribution network while simultaneously maintaining little, or low, frequency dispersion during the dynamic dissemination process.
Abstract:
An apparatus for (and method of) generating circular antenna polarization (from a planar structure encompassing the feed, excitation, and antenna functions), consisting of a plurality of modules each comprising one or more patch antennas, wherein at least one or more of the modules is stacked atop one or more other modules to form a stair-stepped, stadium like antenna array.
Abstract:
The present invention relates to a method of manufacturing a printed wiring board (PWB) of the type depicted in FIG. 1, and to the resulting PWB. Such a PWB comprises a first substrate and alternating layers of a second substrate and a metal layer. The layer 2 metallization of the PWB is a thick layer of a composite engineered metal material having a configurable coefficient of thermal expansion (CTE) to provide CTE matching with respect to radio frequency (RF) components mounted on the PWB, and having substantial heat dissipation properties to dissipate heat generated by the RF components. This composite metal layer also provides a ground plane for the RF components.
Abstract:
The present invention relates to a method of manufacturing a printed wiring board (PWB) of the type depicted in FIG. 1, and to the resulting PWB. Such a PWB comprises a first substrate and alternating layers of a second substrate and a metal layer. The layer 2 metallization of the PWB is a thick layer of a composite engineered metal material having a configurable coefficient of thermal expansion (CTE) to provide CTE matching with respect to radio frequency (RF) components mounted on the PWB, and having substantial heat dissipation properties to dissipate heat generated by the RF components. This composite metal layer also provides a ground plane for the RF components.
Abstract:
The present invention relates to a method of manufacturing a printed wiring board (PWB) of the type depicted in FIG. 1, and to the resulting PWB. Such a PWB comprises a first substrate and alternating layers of a second substrate and a metal layer. The layer 2 metallization of the PWB is a thick layer of a composite engineered metal material having a configurable coefficient of thermal expansion (CTE) to provide CTE matching with respect to radio frequency (RF) components mounted on the PWB, and having substantial heat dissipation properties to dissipate heat generated by the RF components. This composite metal layer also provides a ground plane for the RF components.
Abstract:
A room-environment string-pull construction toy consisting of a string, multiple wall-mountable pulleys, and a variety of colorful, eye-catching and/or whimsical cardboard or paper cutouts which can be mounted on the pulley wheels. Each wall-mountable pulley has a base with a non-permanent adhesive affixed to a back surface thereof, and an axle extending from a front surface thereof on which a pulley wheel is rotatably mounted. The configuration of the toy is constructed by attaching the pulleys to the walls and possibly the ceiling of a room, running the string over the pulleys, and attaching cutouts to the pulleys and string. Planar cutouts attached to the pulley wheels may be shaped as propellers, arrows, cams, disks and the like. Preferably, the cutouts are bright colors and/or are decorated with designs which have a striking appearance when in motion. Mechanical mechanisms assembled from cutouts may be affixed to the pulley wheels to provide visually interesting displays or perform useful mechanical functions such as the manipulation of room objects. The mechanical mechanisms may convert the circular motion of the pulley wheels to linear reciprocating motion, circular motion or chaotic motion. In one possible alternate embodiment the cutouts have fanciful shapes resembling the features of a human face, and are animated by mechanisms to perform fanciful and/or comical motions.
Abstract:
Methods and apparatuses of scene illumination for millimeter wave sensing are presented. One embodiment features illuminating a subject with millimeter wave radiation produced by at least one fluorescent light, generating an image with a passive sensor using the millimeter wave radiation reflected from the subject, and analyzing the image to detect representations corresponding to concealed objects associated with the subject. Another embodiment features at least one fluorescent light which illuminates a subject with millimeter wave radiation, and passive millimeter wave sensor which receives the millimeter wave radiation effected from the subject, and generates an image which is analyzed to detect image representations corresponding to concealed objects. Another embodiment features at least one florescent light behind an optically opaque medium which is transparent to millimeter wave radiation, and illuminating a subject with millimeter wave radiation produced by the fluorescent light.
Abstract:
Methods and apparatuses of scene illumination for millimeter wave sensing are presented. One embodiment features illuminating a subject with millimeter wave radiation produced by at least one fluorescent light, generating an image with a passive sensor using the millimeter wave radiation reflected from the subject, and analyzing the image to detect representations corresponding to concealed objects associated with the subject. Another embodiment features at least one fluorescent light which illuminates a subject with millimeter wave radiation, and passive millimeter wave sensor which receives the millimeter wave radiation effected from the subject, and generates an image which is analyzed to detect image representations corresponding to concealed objects. Another embodiment features at least one florescent light behind an optically opaque medium which is transparent to millimeter wave radiation, and illuminating a subject with millimeter wave radiation produced by the fluorescent light.
Abstract:
A monolithic thin film variable power divider is disclosed for variable power level distribution. The thin film power divider includes a substrate having a main surface, a first stage and a second stage, each formed as thin film networks on the main surface of the substrate. The first stage includes a plurality of transmission lines, at least one of the transmission lines having a variable dielectric deposition layer providing variable power level distribution. The variable dielectric deposition is a paraelectric, such as Barium-Strontium-Titanate. The second stage includes a hybrid combiner. The thin film power divider is capable of operating at frequencies extending into the millimeter wave spectrum. The thin film power divider provides a cost effective device that varies the balance of power through a multiport RF distribution network while simultaneously maintaining little, or low, frequency dispersion during the dynamic dissemination process.