Abstract:
A circuit comprises an array of memory cells (10). A plurality of sensing circuits (20), are coupled to the output (14) of respective memory cells (10), for comparing the output signal of the respective one of the memory cells (10) with a reference signal to form a data signal from the output signal from the respective one of the memory cells (10). A reference generator circuit (24, 26) forms the reference signal from a sum wherein each respective one of the memory cells (10) of the addressed group contributes a contribution that is a function of the output signal of the respective one of the memory cells (10). The contributions are equalized for output signal values at more than a saturating distance above the reference signal, and the contributions are equalized for output signal values at more than the saturating distance below the reference signal. In case of storage of multi-level data in the cells the distances from the central level to the saturation levels above and below the reference level are mutually different, with a ratio that corresponds to a ratio of the counts of cells that have been programmed to respective levels.
Abstract:
A control circuit (1, 11) for a memory matrix is used that defines a write process that uses circuit state transitions between at least two idle circuit states, an all column update circuit state and a column selective update state. In the second. During access the control circuit switches back and forth to the column selective update state (W) from the first idle state (II) during execution of a column selective update command and back and forth to the all-column update state (E) from the second idle state (12) during execution of an all column update command. The control circuit (1, 11) is retained in the first and second idle state (II, 12), without switching to the second and first idle state (12, II) between execution of successive column selective update commands and all column update commands respectively.
Abstract:
A memory matrix (10) comprises rows and columns of cells, each cell comprising a resistance hysteresis element (24) and a threshold element (22) coupled in series between a row terminal and a column terminal of the cell (20). The resistance hysteresis element (24) has a mutually larger and smaller hysteresis thresholds of mutually opposite polarity respectively. Voltage differences are applied between the column terminals and the row terminals of cells (20) in a selected row, so as to perform read actions. These voltage differences have a read polarity so that the voltage across the cell (20) is in a direction corresponding to the larger hysteresis threshold. Voltage differences are applied between the column terminals and the row terminals of cells (20) in a selected row, so as to perform erase actions, all cells (20) of a selected row being erased collectively in the erase action. The voltage differences for erase actions have the read polarity. Furthermore voltage differences are applied between the column terminals and the row terminals of cells (20) in a selected row, so as to perform write actions. The voltage differences for the write actions have a write polarity corresponding to the smaller hysteresis threshold, for updating cells (20) that are selected dependent on write data.
Abstract:
A portable storage device (MC) is disclosed, which comprises a memory (MEM) for storing data (DAT), a data interface (INT) for exchanging data (DAT) between the memory (MEM) and a host device (DEV), radio communication interface (RI) designed for receiving a key (K) from a transponder (T), checking means (COMP) for checking if a key (K) has a predefined value (V, and access inhibit means (SW) for controlling access to the memory (MEM), wherein the access inhibit means (SW) are controlled by the checking means (COMP). Access to the memory (MEM) is only granted if a certain key (K) can be received, which means that a certain transponder (T) has to be in the vicinity of the portable storage device (MC) for granting access. Furthermore, data (DAT) which is transferred from host device (DEV) to memory (MEM) can be encrypted and data (DAT) which is transferred from memory (MEM) to host device (DEV) can be decrypted. In this way for example commonly used memory cards can be secured against unauthorized use.
Abstract:
A processor system is described comprising at least a first and a second processor element (PEI, PE2). The first processor element (PEI) has a cluster request indicator (CR12) related to the second processor element and the second processor element (PE2) has a cluster request indicator (CR21) related to the first processor element. The processor elements have an instruction set enabling dynamic control of the indicators. The indicators (CR12, CR21) have a value range comprising at least a first value (positive indicator) indicating that the processor element requests to form a cluster with the related processor element, and a second value (negative indicator) indicating that the processor element does not request to form a cluster with the related processor element. The system further comprises a cluster control facility (CC12) which detects the value of the cluster request indicator and organizes the processor elements in clusters in accordance with the detected values. Two processor elements belong to the same cluster if they have positive indicators related to each other, or if there is a sequence of processor elements comprising those two processor elements wherein each pair of subsequent processor elements has positive indicators related to each other.
Abstract:
A memory matrix (10) comprises rows and columns of cells, each cell comprising a resistance hysteresis element (24) and a threshold element (22) coupled in series between a row terminal and a column terminal of the cell (20). The resistance hysteresis element (24) has a mutually larger and smaller hysteresis thresholds of mutually opposite polarity respectively. Voltage differences are applied between the column terminals and the row terminals of cells (20) in a selected row, so as to perform read actions. These voltage differences have a read polarity so that the voltage across the cell (20) is in a direction corresponding to the larger hysteresis threshold. Voltage differences are applied between the column terminals and the row terminals of cells (20) in a selected row, so as to perform erase actions, all cells (20) of a selected row being erased collectively in the erase action. The voltage differences for erase actions have the read polarity. Furthermore voltage differences are applied between the column terminals and the row terminals of cells (20) in a selected row, so as to perform write actions. The voltage differences for the write actions have a write polarity corresponding to the smaller hysteresis threshold, for updating cells (20) that are selected dependent on write data.
Abstract:
A control circuit (1, 11) for a memory matrix is used that defines a write process that uses circuit state transitions between at least two idle circuit states, an all column update circuit state and a column selective update state. In the second. During access the control circuit switches back and forth to the column selective update state (W) from the first idle state (II) during execution of a column selective update command and back and forth to the all-column update state (E) from the second idle state (12) during execution of an all column update command. The control circuit (1, 11) is retained in the first and second idle state (II, 12), without switching to the second and first idle state (12, II) between execution of successive column selective update commands and all column update commands respectively.
Abstract:
Systems (1) comprising generating devices (2) comprising sensors (21) for generating sensor signals representing orientations of the generating devices (2) are provided with comparing devices (3) comprising comparators (31) for comparing the sensor signals with reference signals for interpreting the orientations, to increase the number of possible applications. The generating devices (2) and the comparing devices (3) may form parts of one apparatus (4) or of different apparatuses and then communicate wiredly or wirelessly via radio or infrared. Reference sensors (33,52) for generating the reference signals and/or reference memories (34,53) for storing the reference signals may be located in the comparing devices (3) and/or in sources (5) and then communicate wiredly or wirelessly via radio or infrared. Further comparators (36) in the comparing devices (3) may introduce adjustable sensitivities.