摘要:
Many conventional lock-free data structures exploit techniques that are possible only because state-of-the-art 64-bit processors are still running 32-bit operating systems and applications. As software catches up to hardware, “64-bit-clean” lock-free data structures, which cannot use such techniques, are needed. We present several 64-bit-clean lock-free implementations: including load-linked/store conditional variables of arbitrary size, a FIFO queue, and a freelist. In addition to being portable to 64-bit software (or more generally full-architectural-width pointer operations), our implementations also improve on existing techniques in that they are (or can be) space-adaptive and do not require a priori knowledge of the number of threads that will access them.
摘要:
Solutions to a value recycling problem that we define herein facilitate implementations of computer programs that may execute as multithreaded computations in multiprocessor computers, as well as implementations of related shared data structures. Some exploitations of the techniques described herein allow non-blocking, shared data structures to be implemented using standard dynamic allocation mechanisms (such as malloc and free). A class of general solutions to value recycling is described in the context of an illustration we call the Repeat Offender Problem (ROP), including illustrative Application Program Interfaces (APIs) defined in terms of the ROP terminology. Furthermore, specific solutions, implementations and algorithm, including a Pass-The-Buck (PTB) implementation are also described. Solutions to the proposed value recycling problem have a variety of uses. For example, a single-word lock-free reference counting (SLFRC) technique may build on any of a variety of value recycling solutions to transform, in a straight-forward manner, many lock-free data structure implementations that assume garbage collection (i.e., which do not explicitly free memory) into dynamic-sized data structures.
摘要:
One embodiment of the present invention provides a system for generating executable code. During operation, the system receives source code, wherein the source code can include declarations for types and operations, wherein the type declarations may be parameterized, and wherein the source code may specify subtyping relationships between declared types. Next, the system compiles or interprets the source code to produce executable code, wherein the type parameters may be instantiated by different types during execution, and wherein the result of executing operations may depend upon the instantiations of the type parameters. While compiling or interpreting the source code, the system checks the types and operations in the source code to ensure that the executable code generated is type-safe, and hence will not generate type errors during execution.
摘要:
The design of nonblocking linked data structures using single-location synchronization primitives such as compare-and-swap (CAS) is a complex affair that often requires severe restrictions on the way pointers are used. One way to address this problem is to provide stronger synchronization operations, for example, ones that atomically modify one memory location while simultaneously verifying the contents of others. We provide a simple and highly efficient nonblocking implementation of such an operation: an atomic k-word-compare single-swap operation (KCSS). Our implementation is obstruction-free. As a result, it is highly efficient in the uncontended case and relies on contention management mechanisms in the contended cases. It allows linked data structure manipulation without the complexity and restrictions of other solutions. Additionally, as a building block of some implementations of our techniques, we have developed the first nonblocking software implementation of load-linked/store-conditional that does not severely restrict word size.
摘要:
Solutions to a value recycling problem that we define herein facilitate implementations of computer programs that may execute as multithreaded computations in multiprocessor computers, as well as implementations of related shared data structures. Some exploitations of the techniques described herein allow non-blocking, shared data structures to be implemented using standard dynamic allocation mechanisms (such as malloc and free). A variety of solutions to the proposed value recycling problem may be implemented. A class of general solutions to value recycling is described in the context of an illustration we call the Repeat Offender Problem (ROP), including illustrative Application Program Interfaces (APIs) defined in terms of the ROP terminology. Furthermore, specific solutions, implementations and algorithm, including a Pass-The-Buck (PTB) implementation are also described. Solutions to the value recycling problem can be applied in a variety of ways to implement dynamic-sized data structures.
摘要:
Solutions to a value recycling problem facilitate implementations of computer programs that may execute as multithreaded computations in multiprocessor computers, as well as implementations of related shared data structures. Some exploitations allow non-blocking, shared data structures to be implemented using standard dynamic allocation mechanisms (such as malloc and free). Some exploitations allow non-blocking, indeed even lock-free or wait-free, implementations of dynamic storage allocation for shared data structures. In some exploitations, our techniques provide a way to manage dynamically allocated memory in a non-blocking manner without depending on garbage collection. While exploitations of solutions to the value recycling problem that we propose include management of dynamic storage allocation wherein values managed and recycled tend to include values that encode pointers, they are not limited thereto. Indeed, the techniques are more generally applicable to management of values in a multithreaded computation. For example, value recycling techniques may be exploited, in some cases, apart from dynamic storage allocation, to allow a multithreaded computation to avoid the classic ABA hazard.
摘要:
One embodiment of the present invention provides a system that performs operations on a hash table that is fully dynamic and lock-free. This hash table is implemented with a linked list containing data nodes and a bucket array containing bucket pointers, wherein the bucket pointers point to portions of the linked list that function as hash buckets, and wherein the linked list contains only data nodes and no dummy nodes.
摘要:
Apparatus, methods, and computer program products are disclosed for concurrently searching a memory containing a skiplist data structure. The method locates the skiplist data structure in the memory. The skiplist data structure includes a plurality of linked lists related by a skiplist invariant. Furthermore, the plurality of linked lists includes a first-level linked list and one or more higher-level linked lists. The skiplist data structure also includes a plurality of nodes, each of which includes a key field, at least one pointer field, and a lock field, respectively. Each of the plurality of nodes is linked to the first-level linked list through the at least one pointer field and ordered responsive to the key field. The method performs a search operation on the skiplist data structure, while the skiplist data structure is subject to concurrent alteration of the plurality of nodes by a plurality of execution threads that are configured to maintain the skiplist invariant and returns a result of the search operation.
摘要:
Many conventional lock-free data structures exploit techniques that are possible only because state-of-the-art 64-bit processors are still running 32-bit operating systems and applications. As software catches up to hardware, “64-bit-clean” lock-free data structures, which cannot use such techniques, are needed. We present several 64-bit-clean lock-free implementations: including load-linked/store conditional variables of arbitrary size, a FIFO queue, and a freelist. In addition to being portable to 64-bit software (or more generally full-architectural-width pointer operations), our implementations also improve on existing techniques in that they are (or can be) space-adaptive and do not require a priori knowledge of the number of threads that will access them.
摘要:
The design of nonblocking linked data structures using single-location synchronization primitives such as compare-and-swap (CAS) is a complex affair that often requires severe restrictions on the way pointers are used. One way to address this problem is to provide stronger synchronization operations, for example, ones that atomically modify one memory location while simultaneously verifying the contents of others. We provide a simple and highly efficient nonblocking implementation of such an operation: an atomic k-word-compare single-swap operation (KCSS). Our implementation is obstruction-free. As a result, it is highly efficient in the uncontended case and relies on contention management mechanisms in the contended cases. It allows linked data structure manipulation without the complexity and restrictions of other solutions. Additionally, as a building block of some implementations of our techniques, we have developed the first nonblocking software implementation of load-linked/store-conditional that does not severely restrict word size.