Abstract:
A scalable first-in-first-out queue implementation adjusts to load on a host system. The scalable FIFO queue implementation is lock-free and linearizable, and scales to large numbers of threads. The FIFO queue implementation includes a central queue and an elimination structure for eliminating enqueue-dequeue operation pairs. The elimination mechanism tracks enqueue operations and/or dequeue operations and eliminates without synchronizing on the FIFO queue implementation.
Abstract:
The design of nonblocking linked data structures using single-location synchronization primitives such as compare-and-swap (CAS) is a complex affair that often requires severe restrictions on the way pointers are used. One way to address this problem is to provide stronger synchronization operations, for example, ones that atomically modify one memory location while simultaneously verifying the contents of others. We provide a simple and highly efficient nonblocking implementation of such an operation: an atomic k-word-compare single-swap operation (KCSS). Our implementation is obstruction-free. As a result, it is highly efficient in the uncontended case and relies on contention management mechanisms in the contended cases. It allows linked data structure manipulation without the complexity and restrictions of other solutions. Additionally, as a building block of some implementations of our techniques, we have developed the first nonblocking software implementation of load-linked/store-conditional that does not severely restrict word size.
Abstract:
We propose a new form of software transactional memory (STM) designed to support dynamic-sized data structures, and we describe a novel non-blocking implementation. The non-blocking property we consider is obstruction-freedom. Obstruction-freedom is weaker than lock-freedom; as a result, it admits substantially simpler and more efficient implementations. An interesting feature of our obstruction-free STM implementation is its ability to use of modular contention managers to ensure progress in practice.
Abstract:
The design of nonblocking linked data structures using single-location synchronization primitives such as compare-and-swap (CAS) is a complex affair that often requires severe restrictions on the way pointers are used. One way to address this problem is to provide stronger synchronization operations, for example, ones that atomically modify one memory location while simultaneously verifying the contents of others. We provide a simple and highly efficient nonblocking implementation of such an operation: an atomic k-word-compare single-swap operation (KCSS). Our implementation is obstruction-free. As a result, it is highly efficient in the uncontended case and relies on contention management mechanisms in the contended cases. It allows linked data structure manipulation without the complexity and restrictions of other solutions. Additionally, as a building block of some implementations of our techniques, we have developed the first nonblocking software implementation of load-linked/store-conditional that does not severely restrict word size.
Abstract:
In some embodiments, a Hat Trick deque requires only a single DCAS for most pushes and pops. The left and right ends do not interfere with each other until there is one or fewer items in the queue, and then a DCAS adjudicates between competing pops. By choosing a granularity greater than a single node, the user can amortize the costs of adding additional storage over multiple push (and pop) operations that employ the added storage. A suitable removal strategy can provide similar amortization advantages. The technique of leaving spare nodes linked in the structure allows an indefinite number of pushes and pops at a given deque end to proceed without the need to invoke memory allocation or reclamation so long as the difference between the number of pushes and the number of pops remains within given bounds. Both garbage collection dependent and explicit reclamation implementations are described.
Abstract:
System, methods, and computer program products are provided for enhanced freight tracking and monitoring. The system may track the location of a freight shipment within a carrier's transportation network from the time it is picked up by a carrier from a consignor until it is delivered to a consignee, provide for weight determinations and shipping re-classifications of the freight shipment during transport, and provide real-time status information and reports to the carrier, consignor, and/or consignee.
Abstract:
System, methods, and computer program products are provided for enhanced freight tracking and monitoring. The system may track the location of a freight shipment within a carrier's transportation network from the time it is picked up by a carrier from a consignor until it is delivered to a consignee, provide for weight determinations and shipping re-classifications of the freight shipment during transport, and provide real-time status information and reports to the carrier, consignor, and/or consignee.
Abstract:
The present disclosure describes a unique way for each of multiple processes to operate in parallel and use the same shared data without causing corruption to the shared data. For example, during a commit phase, a corresponding transaction can attempt to increment a globally accessible version information variable and store a current value of the globally accessible version information variable for updating version information associated with modified data regardless of whether an associated attempt by the corresponding transaction to modify the globally accessible version information variable was successful. As an alternative mode, a corresponding transaction can merely read and store a current value of the globally accessible version information variable without attempting to update the globally accessible version information variable before such use. In yet another application, a parallel processing environment implements a combination of both aforementioned modes depending on a self-abort rate of the transaction.
Abstract:
Transactional memory (TM) may be used in conjunction with various synchronization mechanisms, such as that copy a current version of an object, update the copy, and then cause the copy to become current atomically by changing a “current version” indicator. Software operations to modify an object may first make a private copy of the object, modify the private copy, and atomically make the private copy the current version while verifying that no other software operation or transaction has concurrently updated the object. A transaction may be used to update the current copy of a collection of data “in place” and thereby avoiding the necessity to make a copy of the data being modified. If the transactional memory mechanism is unable to complete the transaction to modify the collection of data in place, a set of software operations may be used to modify the collection of data.
Abstract:
A broadcast data receiver (BDR) is provided with a web browser system. A service provided by the web browser system si selectable by a user of the BDR and, when selected, is controllable by the user via a remote control handset, thereby allowing an Internet web site page for display on a display screen connected to or forming part of the BDR to be determined and one or more user options can be selected if required. One or more icons are generated on at least a portion of the display screen and each of the icons represents a button on the remote control handset. Each icon is mapped to a specific control function or option of the web browser, thereby allowing user selection of a web browser control function or option by selection of the appropriate button on the remote control handset.