摘要:
A cryocooler is provided that includes: a regenerator piston; a drive coupler; and a link flexure having a proximal end coupled by a first pin to the drive coupler and having a distal end coupled by a second pin to the regenerator piston, where the link flexure forms a vane having flattened opposing faces that are orthogonal to a longitudinal axis for the first and second pin.
摘要:
The invention is directed to an improved cryogenic cooler with an expander where the regenerator matrix is decoupled from the displacer or piston, thereby allowing the design of each to be optimized substantially independently. The regenerator matrix is preferably positioned spaced apart from the displacer and can be designed to enhance thermal exchanges and flow rates of the working gas. In one embodiment, the regenerator matrix has a serpentine shape or U-shape disposed around the displacer and the cold finger. Preferably, the regenerator matrix is static. The thermal lengths of the cold finger and/or the displacer can be extended by minimizing their geometrical lengths. Additionally, the structural integrity or stiffness of the cold finger and/or displacer can be strengthened.
摘要:
The invention is directed to an improved cryogenic cooler with an expander where the regenerator matrix is decoupled from the displacer or piston, thereby allowing the design of each to be optimized substantially independently. The regenerator matrix is preferably positioned spaced apart from the displacer and can be designed to enhance thermal exchanges and flow rates of the working gas. In one embodiment, the regenerator matrix has a serpentine shape or U-shape disposed around the displacer and the cold finger. Preferably, the regenerator matrix is static. The thermal lengths of the cold finger and/or the displacer can be extended by minimizing their geometrical lengths. Additionally, the structural integrity or stiffness of the cold finger and/or displacer can be strengthened.
摘要:
An integrated sensor assembly (10) includes a gas compression unit (104) having a first longitudinal axis (308) and a gas expansion unit (112) having a second longitudinal axis (366) and the gas expansion unit is disposed with its second longitudinal axis orthogonal to the gas compression unit first longitudinal axis (308). A rotary motor (302) includes a rotor (324) supported for rotation with respect to a motor rotation axis (328) and the sensor assembly configuration is folded to orient the motor rotation axis substantially parallel with the second longitudinal axis (366). A motor shaft (320) extending from the rotor includes a first and second mounting features (336, 340) disposed substantially parallel with and radially offset from the motor rotation axis (328). A first drive coupling couples between the first mounting feature (336) and a gas compression piston (304) and drives the piston (304) with a reciprocal linear translation directed along the first longitudinal axis (308). A second drive coupling couples between the second mounting feature (340) and a gas displacing piston (362) and drives the piston (362) with a reciprocal linear translation directed along said second longitudinal axis (366).
摘要:
A miniature cooling device includes numerous improvements capable of increasing the reliability and useful lifetime of the device, as well as improving electrical power to cooling power conversion efficiency. The improvements include a unitary DC motor shaft design that incorporates a unitary mass flywheel into the shaft element and provides a solid shaft cross-section for increasing magnetic flux density in the DC motor. Additional improvements include a bend resistant flexible vane in the DC motor to compression piston drive coupler, reduced dead space volume within the compression cylinder, improved heat dissipation by a cylinder head cover and an athermalized compressor design that provides uniformly efficient operation over a wide range of operating temperatures. Further improvements include fabrication and coating improvements that increase the life of compression piston and compression cylinder wear surfaces.
摘要:
A method for forming a mating piston and cylinder sleeve wherein the piston includes an outer diameter and a cylinder sleeve includes a bore for receiving the piston therein and wherein the piston outer diameter and the bore each form bearing surfaces having a gas film maintained in a gap therebetween. The method includes the steps of coating the piston outer diameter with a layer of PTFE based composite material and then diamond turning the piston outer diameter to a final piston diameter. The cylinder wall is also coated with a PTFE based composite layer which may be deposited by an electroless nickel plating process. The cylinder longitudinal bore is then diamond turned to a cylinder final diameter for mating with the piston final diameter.
摘要:
An infrared video camera system comprises an uncooled infrared sensor mounted and a thermally conductive thin walled radiation shield for shielding radiation from reaching an active surface of the uncooled infrared sensor. A TEC maintains the sensor active surface and the radiation shield at a substantially constant temperature. The uncooled infrared sensor and radiation shield are further housed in a hollow thermally conductive vacuum cover which is vacuum sealed with a base assembly and includes a vacuum sealed infrared transparent window in an aperture at a top end of the vacuum cover for allowing infrared radiation to reach the active surface and for forming a vacuum chamber enclosing the infrared sensor and radiation shield. A relay optical cell mounted to a camera body comprises at least one optical element for relaying an image formed at its entrance onto the active surface. An imaging optical assembly is interchangeably mounted to the relay optical cell and comprises at least one optical element for imaging an infrared scene to be imaged onto the entrance aperture of the relay cell. A plurality of different field of view imaging optical assemblies are interchangeably mounted without substantially changing the field of view of the sensor active surface.
摘要:
A refrigeration device includes a gas displacing piston (362) movable within a gas expander cylinder (364). The volume of a gas expansion space (362) is varied as the gas displacing piston (362) is moved over an expansion stroke range. The device includes a compression spring (622) disposed to bias the gas displacing piston (362) toward a compression stroke top end position (85). A cable element (606) extends into the gas expansion cylinder (364) and attaches to the gas displacing piston (362). A motive drive device (302) applies a tensioning force to the cable (606) and the tension force opposes the spring biasing force and moves the gas displacing piston (362) to a compression stroke bottom end position (83). In a further embodiment the expansion stroke is self-tuning when a pneumatic force generated by refrigeration gas contained within the expansion space (362) exceeds a threshold gas pressure and the pneumatic force overcomes the spring biasing force and pneumatically forces the gas displacing piston (362) to the bottom end position (83).
摘要:
A miniature cooling device includes numerous improvements capable of increasing the reliability and useful lifetime of the device, as well as improving electrical power to cooling power conversion efficiency. The improvements include a unitary DC motor shaft design that incorporates a unitary mass flywheel into the shaft element and provides a solid shaft cross-section for increasing magnetic flux density in the DC motor. Additional improvements include a bend resistant flexible vane in the DC motor to compression piston drive coupler, reduced dead space volume within the compression cylinder, improved heat dissipation by a cylinder head cover and an athermalized compressor design that provides uniformly efficient operation over a wide range of operating temperatures. Further improvements include fabrication and coating improvements that increase the life of compression piston and compression cylinder wear surfaces.
摘要:
A miniature cooling device includes numerous improvements capable of increasing the reliability and useful lifetime of the device, as well as improving electrical power to cooling power conversion efficiency. The improvements include a unitary DC motor shaft design that incorporates a unitary mass flywheel into the shaft element and provides a solid shaft cross-section for increasing magnetic flux density in the DC motor. Additional improvements include a bend resistant flexible vane in the DC motor to compression piston drive coupler, reduced dead space volume within the compression cylinder, improved heat dissipation by a cylinder head cover and an athermalized compressor design that provides uniformly efficient operation over a wide range of operating temperatures. Further improvements include fabrication and coating improvements that increase the life of compression piston and compression cylinder wear surfaces.