摘要:
A hydrogen storage material analyzer along with its analysis and activation methods, the hydrogen storage material analyzer including a H2 absorption-desorption cycling tester, a temperature-programmed desorption spectrometer, a specimen holder and a temperature-controlled furnace.
摘要:
The present invention discloses a method for improving the efficiency of flexible organic solar cells. The steps of the method comprise: a conductive film-coated flexible substrate is provided; and a hole blocking layer is formed on the flexible substrate by atomic layer deposition, or an active layer is formed first then a hole blocking layer is formed on the active layer by atomic layer deposition. Atomic layer deposition can control the thickness of the hole blocking layer precisely and form uniformly surface in a large area, so that the power conversion efficiency of the flexible organic solar cell is increasing effectively.
摘要:
The present invention relates to a flat fuel cell combining runner plates and a conducting layer. The flat fuel cell includes two runner plates and a conducting layer between the runner plates. There are conducting blocks embedded into the predefined locations on the assembly surfaces of two runner plates. A concave flow passage is shaped by the assembly surfaces of runner plates and the conducting blocks, thus providing a unique structure combining the runner plates and conducting layer. The conducting blocks are electrically connected through the contact of convex flanges on the conducting blocks. Thus, the flat fuel cells are developed thin, making it possible to greatly reduce manufacturing assembly costs without the need of electric wires and to achieve better economic efficiency and applicability.
摘要:
The present invention is a flexible fuel cell, which overcomes the shortcomings of a conventional fuel cell made of solid materials. The flexible fuel cell includes a battery pack of fuel cell units with a preset amount and configuration of fuel cell units, and a flexible locator. The flexible locator is made of flexible materials to ensure the ability to maintain gas-tight seals. Because of the ability to maintain good gas-tight seals and to have stronger resistance to heat and corrosion, the fuel cell of the present invention offers advantages of light weight, gas-tight sealing, and shock resistance.
摘要:
The present invention provides a fuel cell module compatible with a dry cell. The fuel cell module includes an enclosure, a power generating unit, a hydrogen storage unit and positive/negative output ends. The hollow enclosure has an internal space, and is provided with some preset through-holes, allowing external oxygen to enter into the space. The power generating unit and hydrogen storage unit are mounted into the space of the enclosure. Positive and negative output ends are placed at both sides or adjacent at one side of the enclosure, thereby guiding the positive and negative charge generated by the power generating unit; since the fuel cell modules are compatible with existing conventional dry cells. These modules are widely applied to existing electrical or electronic products.
摘要:
The present invention relates to a flat fuel cell combining runner plates and a conducting layer. The flat fuel cell includes two runner plates and a conducting layer between the runner plates. There are conducting blocks embedded into the predefined locations on the assembly surfaces of two runner plates. A concave flow passage is shaped by the assembly surfaces of runner plates and the conducting blocks, thus providing a unique structure combining the runner plates and conducting layer. The conducting blocks are electrically connected through the contact of convex flanges on the conducting blocks. Thus, the flat fuel cells are developed thin, making it possible to greatly reduce manufacturing assembly costs without the need of electric wires and to achieve better economic efficiency and applicability.
摘要:
The present invention provides a fuel cell module compatible with a dry cell. The fuel cell module includes an enclosure, a power generating unit, a hydrogen storage unit and positive/negative output ends. The hollow enclosure has an internal space, and is provided with some preset through-holes, allowing external oxygen to enter into the space. The power generating unit and hydrogen storage unit are mounted into the space of the enclosure. Positive and negative output ends are placed at both sides or adjacent at one side of the enclosure, thereby guiding the positive and negative charge generated by the power generating unit; since the fuel cell modules are compatible with existing conventional dry cells. These modules are widely applied to existing electrical or electronic products.
摘要:
The present invention is a fuel cell with a combined fuel supply unit and power generating unit. The fuel cell includes a fuel supply unit, a power generating unit, and an enclosure. The fuel supply or fuel storage unit is incorporated laterally or internally into the power generating unit, thereby shortening the fuel pipeline. The performance of the fuel cell is improved, and the space required for fuel cell is reduced for greater applicability.
摘要:
The present invention provides a portable power supply device with a fuel cell. The device includes a main body with predefined internal and exterior parts. A fuel cell stack is mounted onto a predefined location of the main body. A fuel supplier is mounted at a preset location of the main body. A control switch is mounted at a predefined location of main body for switching the fuel cell stack on and off. A transformer system is used to convert DC of the fuel cell stack into AC. At least one AC socket is mounted onto a preset location of the main body. The portable power supply device of the present invention offers a longer lasting power supply via a fuel cell stack. The portable power supply device is an environment-friendly and weather-proof power generating system for currently used electronics.
摘要:
The present invention relates to a fuel cell module with a thermal feedback mechanism. The fuel cell module includes a hydrogen storage container, a fuel cell body and a housing. The hydrogen storage container has a tank, a valve, and hydrogen storage alloy. The fuel cell body is integrated with the hydrogen storage container, such that the electricity-generating part of the fuel cell body faces the hydrogen storage container. Furthermore, heat generated from the electrochemical reaction can be fed back to the hydrogen storage container. This heat could increase the temperature of the hydrogen storage container, leading to a more stable discharge reaction and subsequently improving the performance of the fuel cell.