Abstract:
[Task] The present invention aims to provide a vacuum capacitor instrument voltage transformer by which current and voltage can be much precisely measured.[Means for achieving task] The means is so made that a main capacitor portion 8 and a voltage dividing capacitor portion 10 are installed in a earthed vacuum vessel, a main ground circuit 30 is provided through which a leak current I2 flows from an outer surface of the primary line-path side vacuum vessel to the earth E, and a voltage dividing ground circuit 31 is provided through which a leak current I11 flows to the earth E through a voltage dividing insulating cylindrical member 11 that is disposed between an earthed portion and each of the main capacitor portion and the voltage dividing capacitor portion.
Abstract:
An attraction coil, a repulsion coil and a plunger are disposed in a magnetic path of an electromagnetic device. An starting flux generating section is disposed between the attraction coil and the repulsion coil in the magnetic path. A magnetic flux of the starting flux generating section is repulsed magnetically by a magnetic flux of the repulsion coil at a part of the magnetic path to start the plunger. The plunger is attracted to one of first and second magnetic path parts by electromagnetic forces generated from magnetic fluxes of the attraction coil and the repulsion coil.
Abstract:
A vacuum capacitor includes a vacuum vessel, stationary and movable electrodes arranged in the vacuum vessel, and a bellows which follows the movable electrode to maintain the hermeticity of the inside of the vacuum vessel and which serves as a current path, wherein the bellows is formed of a conduction high-strength heat resisting alloy.
Abstract:
A vacuum variable capacitor includes an energization bellows arranged in a vacuum vessel and having ends mounted to a movable-electrode support plate and a movable side-end plate, respectively, a heat shielding bellows arranged inside the energization bellows and outside a slide-guide support and having ends mounted to the movable-electrode support plate and the movable side-end plate, respectively, and a cooling pipe interposed between the two bellows and for preventing transfer of heat generated in the energization bellows.
Abstract:
A process for forming contact material of an electrode comprises the steps of preparing chromium of which oxygen content is substantially reduced, forming a molten mixture of the chromium and copper, atomizing the molten mixture into fine particles to obtain Cu-Cr alloyed powder, compacting Cu-Cr alloyed powder under desired pressure, and sintering the compacted alloyed powder. The oxygen content of the chromium may be reduced until less than 0.1 wt %. In a course of the process, a metal having melting point lower then copper may be blended. The metal may be blended in Cu-Cr alloyed powder, or blended in the molten mixture of copper and chromium. Alternatively, the process further includes the steps of forming a second molten mixture of copper and a metal having melting point lower than copper, atomizing the second molten mixture into fine particles to obtain alloyed powder of copper and the metal, and blending Cu-Cr alloyed powder with the alloyed powder of copper and the metal. The metal may be selected from one or mixture of the metals consisting of bismuth, lead, tellurium, antimony and selenium.
Abstract:
A vacuum capacitor includes a fixed electrode, a movable electrode, a movable electrode shaft, a magnetic flux receiving unit, a magnetic flux generating unit and a capacitance control unit. The fixed electrode is formed from a plurality of electrode members in a vacuum casing. The movable electrode is formed from a plurality of electrode members arranged in gaps formed between the electrode members of the fixed electrode in the vacuum casing. The movable electrode shaft supports the movable electrode. Capacitance appearing between the movable electrode and the fixed electrode is varied by rotation of the movable electrode shaft. The magnetic flux receiving unit rotates the movable electrode shaft in the vacuum casing. The magnetic flux generating unit is located outside the vacuum casing and rotates the magnetic flux receiving unit by magnetic attraction. The capacitance control unit rotates the magnetic flux generating unit.
Abstract:
The present invention relates to an sintered electric contact containing Cr in an amount of 15 to 30% by weight and Cu being balance as main components, 0.05 to 0.5% by weight of Te, 100 to 3000 ppm of O, 7.5 to 900 ppm of Al, and 15 to 750 ppm of Si.
Abstract:
An attraction coil, a repulsion coil and a plunger are disposed in a magnetic path of an electromagnetic device. An starting flux generating section is disposed between the attraction coil and the repulsion coil in the magnetic path. A magnetic flux of the starting flux generating section is repulsed magnetically by a magnetic flux of the repulsion coil at a part of the magnetic path to start the plunger. The plunger is attracted to one of first and second magnetic path parts by electromagnetic forces generated from magnetic fluxes of the attraction coil and the repulsion coil.
Abstract:
A process for forming an electrode assembled into a vacuum interrupter is composed of the steps of blending silver(Ag) powder and chromium(Cr) powder in a content ratio such that Ag powder forms a matrix and Cr powder being dispersed therein, the blending ratio is prefer to be determined to contain 50 to 95 wt. % of Ag powder and 5 to 50 wt. % of Cr powder, compacting the blended powder to a compacted body, sintering the body at temperatures around melting point of Ag, and regulating density of the sintered article at least 90%. Particle size of Cr to be blended may be determined less than 150 .mu.m, more preferably, less than 60 .mu.m. Sintering temperature may be determined between 800.degree. to 950.degree. C.
Abstract:
A method for forming an electrical contact material comprises the steps of melting a mixture of Cu and Cr into a molten alloy, atomizing the molten alloy into fine particles to obtain alloyed particles. Cr particles in the alloyed powder disintegrate to less than 5 .mu.m in mean particle diameter. The alloyed powder is sintered thereafter and a mean particle diameter of chromium in the sintered article is fined in a range of 2 to 20 .mu.m. An electrical contact material is composed of a copper matrix and chromium particles having a mean particle diameter of 2 to 20 .mu.m. The chromium particles are homogeneously dispersed in the copper matrix.