Abstract:
The data processor can form a system including a combination of two or more operating systems running in parallel, which achieves a higher data transfer rate between operating systems and the increase in system performance without impairing the system reliability. In the system, data transfer between domains is performed in an enhanced access mode as well as an access mode in which an access from a domain manager having control of domains is handled as one from the domain manager. The enhanced access mode is arranged by enhancing, to a CPU scale, an access mode in which an access from the domain manager is treated as an access from a software program working on a domain, and the software program of domain manager transfers data between the domains. For example, in case that the domain manager performs data transfer between domains in the enhanced access mode, a read access from the domain manager is disguised as a read access from a first domain, and a write access from the domain manager is disguised as a write access from a second domain.
Abstract:
This invention is intended to reduce the hypervisor overhead. In the data processor disclosed herein, when a device driver calls for access to a control register to activate a process of a dedicated controlled peripheral device, the access is handled directly without intervention of processing by the hypervisor. When an interrupt is generated from a dedicated controlled peripheral device, a process is directly initiated by the device driver of the operating system governing the peripheral device without intervention of processing by the hypervisor. By implementing this manner of control in the processor, it becomes possible to carry out peripheral device control without intervention of processing by the hypervisor. Thereby, the hypervisor overhead is alleviated.
Abstract:
In the case of constituting a processing unit having the characteristic of a VLIW type processing unit and the characteristic of a pipeline type processing unit, since reference to the result of operations is made among a plurality of processing units executing in parallel the operations, transfer of the register file is frequently generated among the processing units, resulting in insufficient effect of the high speed operations. In view of solving this problem, the predicate registers are provided and moreover a means for broadcasting the update data of the predicate register to all processing units is also provided. Thereby, operations for obtaining branching condition and numerical value can be realized in different processing units and the number of steps of the processing program can be reduced. In addition, since high speed transfer between the processing units of the data register having a wider bit width is no longer required and thereby the mounting area can be reduced and high speed processing unit can be realized.
Abstract:
An object of the present invention is to provide a processor which can execute calculation between data of a data length larger than the data length of the register file at high speed without the cost of the hardware being increased so much and the first long register 12 and the second long register 13 having a bit width which is two times of the bit width of the register file and the long register update device 14 for updating the data of the second long register 13 partially are installed between the register file 2 and the pixel calculator 11. When the long register update pixel calculation instruction is stored in the instruction register 31, the long register update device 14 connects a part of the data of the second long register 13 and a part of data read from the register file 2 and sends them to the pixel calculator 11 and the second long register 13 via the selector 15. The pixel calculator 11 executes calculation between the data of the first long register 12 and the data given from the selector 15.
Abstract:
There is provided an instruction supply unit 20 for generating addresses for each instruction when an interrupt occurs, from an interrupted instruction until an instruction to be executed later by the number of instructions contained in a delay slot of the instruction an interrupt control unit 50 for storing each address thus generated, and an instruction executing unit 30 for successively reading out each of the stored addresses from the address of the interrupted address after the interrupt processing is completed. The instruction executing unit 30 executes a branch instruction to the address which is first read out. Thereafter, with respect to the addresses which are read out secondly and subsequently, if the address is the branch destination address of the branch instruction, the instruction executing unit 30 executes the branch instruction to the address, and if the address is not the branch destination address, it executes an NOP instruction. Accordingly, even when the instruction length is not fixed, the interrupt can be accurately processed.
Abstract:
In a computer system equipped with a large number of registers which have an access time much shorter than that of a main memory, a register designating address part in which the assignment of an area register having a register address of a register area as its value and the assignment of a register displacement value expressing a relative register address within the register area are combined is provided in each instruction so that, even when physical registers are increased, save and restore of registers attendant upon task switches, etc. may be lessened to attain a raised speed of program run processing. Besides, an address part for designating main memory is provided in the same instruction.
Abstract:
The data processor can form a system including a combination of two or more operating systems running in parallel, which achieves a higher data transfer rate between operating systems and the increase in system performance without impairing the system reliability. In the system, data transfer between domains is performed in an enhanced access mode as well as an access mode in which an access from a domain manager having control of domains is handled as one from the domain manager. The enhanced access mode is arranged by enhancing, to a CPU scale, an access mode in which an access from the domain manager is treated as an access from a software program working on a domain, and the software program of domain manager transfers data between the domains. For example, in case that the domain manager performs data transfer between domains in the enhanced access mode, a read access from the domain manager is disguised as a read access from a first domain, and a write access from the domain manager is disguised as a write access from a second domain.
Abstract:
A network topology management system includes information processing units, storage units, connection units that control connection switching between the information processing units and the storage units, a management unit that manages a network topology consisting of the information processing units, the storage units and the connection units, and an emulator connected to the connection units and to the management unit the network. The emulator comprises a conversion section that converts first equipment identification information that identifies the information processing units or the storage units into second equipment identification information that is recognizable by the management unit to identify the information processing units or the storage units, and a transmitting section that sends the second equipment identification information to the management unit. The management device has a control section that manages the network topology based on the second equipment identification information.
Abstract:
An information processing apparatus for managing a storage such as a register file divided into a plurality of register banks. A register bank pointer is provided for each register bank in the register file so as to link the register bank to another optional register bank. The activation records for each of a plurality of tasks are allocated to the corresponding register banks in the register file. The necessary number of register banks for the allocation of the activation records for each task are linked together. The number of register banks linked together or released from the linking is changed with the increase and decrease of the number of activation records to be allocated for each task.
Abstract:
A network topology management system includes information processing units, storage units, connection units that control connection switching between the information processing units and the storage units, a management unit that manages a network topology consisting of the information processing units, the storage units and the connection units, and an emulator connected to the connection units and to the management unit the network. The emulator comprises a conversion section that converts first equipment identification information that identifies the information processing units or the storage units into second equipment identification information that is recognizable by the management unit to identify the information processing units or the storage units, and a transmitting section that sends the second equipment identification information to the management unit. The management device has a control section that manages the network topology based on the second equipment identification information.