Abstract:
The present invention relates to the field of plant genetic engineering. More specifically, the present invention relates to seed specific gene expression during a defined period of embryogenesis. The present invention provides promoters capable of transcribing heterologous nucleic acid sequences in seeds, and methods of modifying, producing, and using the same.
Abstract:
The present invention relates to the field of plant genetic engineering. More specifically, the present invention relates to seed specific gene expression. The present invention provides promoters capable of transcribing heterologous nucleic acid sequences in seeds, and methods of modifying, producing, and using the same.
Abstract:
DNA constructs and other compositions and methods for controlling gene expression in eukaryotic cells and organisms are derived from bacterial quorum sensing systems. One or more cis elements from the luxI promoter (“lux box”) or a functionally similar sequence are incorporated in a eukaryotic promoter. A receptor protein from the LuxR family of transcriptional regulators, upon binding an acylated homoserine lactone (AHL) compound, interacts with the lux box, modulating the activity of the promoter.
Abstract:
The present invention relates to the field of plant genetic engineering. More specifically, the present invention relates to seed specific gene expression. The present invention provides promoters capable of transcribing heterologous nucleic acid sequences in seeds, and methods of modifying, producing, and using the same.
Abstract:
The present invention generally relates to the field of plant genetics and protein biochemistry. More specifically, the present invention relates to modified proteins having an increased number of essential amino acids. The present invention provides proteins modified to have an increased number of essential amino acids, nucleic acid sequences encoding the enhanced proteins, and methods of designing, producing, and using the same. The present invention also includes compositions, transformed host cells, transgenic plants, and seeds containing the enhanced proteins, and methods for preparing and using the same.
Abstract:
The present invention relates to the field of plant genetic engineering. More specifically, the present invention relates to seed specific gene expression during a defined period of embryogenesis. The present invention provides promoters capable of transcribing heterologous nucleic acid sequences in seeds, and methods of modifying, producing, and using the same.
Abstract:
The present invention relates to the field of plant genetic engineering. More specifically, the present invention relates to seed specific gene expression during a defined period of embryogenesis. The present invention provides promoters capable of transcribing heterologous nucleic acid sequences in seeds, and methods of modifying, producing, and using the same.
Abstract:
DNA constructs and other compositions and methods for controlling gene expression in eukaryotic cells and organisms are derived from bacterial quorum sensing systems. One or more cis elements from the luxI promoter (“lux box”) or a functionally similar sequence are incorporated in a eukaryotic promoter. A receptor protein from the LuxR family of transcriptional regulators, upon binding an acylated homoserine lactone (AHL) compound, interacts with the lux box, modulating the activity of the promoter.
Abstract:
The present invention provides a method for altering the tryptophan content of a plant by introducing and expressing an isolated DNA segment encoding an anthranilate synthase in the cells of the plant. Transgenic plants transformed with an isolated DNA segment encoding an anthranilate synthase, as well as human or animal food, seeds and progeny derived from these plants, are also provided.
Abstract:
The present invention relates to the field of plant genetic engineering. More specifically, the present invention relates to seed specific gene expression. The present invention provides promoters capable of transcribing heterologous nucleic acid sequences in seeds, and methods of modifying, producing, and using the same.