摘要:
The present invention relates to a novel antifungal antibacterial compound 2-methylheptylisonicotinate of formula 1 below obtained from natural sources and to a process for the isolation thereof.
摘要:
A system and method that can simultaneously acquire electrocardiogram or pulse rate data (42, 44, 46), dynamically perform time-frequency (70) and chaotic analysis (60) in real-time, visually display the results in a convenient graphical format (50) and store the results in a computer file format (50).
摘要:
A system and method that can simultaneously acquire electrocardiogram or pulse rate data (42, 44, 46), dynamically perform time-frequency (70) and chaotic analysis (60) in real-time, visually display the results in a convenient graphical format (50) and store the results in a computer file format (50).
摘要:
Embodiments of the invention provide methods of preparing an activated acridinium microparticle. Generally, the methods involve direct covalent coupling or an affinity format. The direct covalent coupling method involves coating a microparticle with a proteinaceous compound. Then, a 10-methyl-N-tosyl-N-(2-carboxyethyl)-9-acridinium carboximide trifluoromethane sulfonate is coupled to the proteinaceous compound. In the affinity format, a microparticle is coated with a biotinylated proteinaceous compound. The microparticle is reacted with an anti-biotin labelled 10-methyl-N-tosyl-N-(2-carboxyethyl)-9-acridinium carboximide trifluoromethane sulfonate. Methods are also provided for using such a microparticle. Those methods of use can estimate transfer efficiency, calibrate optics, and measure membrane pore size of a chemiluminescence based instrument. Test elements for analytical instruments are also provided.
摘要:
The present invention relates to a method and system that enables continuous real-time analysis of both ciliary beat frequency and metachronal wave frequency from a single spot in excised native ciliated epithelial tissues as well as in primary and subsequent epithelial cultures. Such method and system utilizes the concept of time-scale wavelet analysis and Hilbert Transformation for backscattered light derived from a confocal (conjugate) spot on the moving cilia. This light contains inherent high and low frequency components corresponding to CBF and MWF.