Abstract:
The present invention is directed to a method for changing the color of colored natural diamonds. The method includes placing a discolored natural diamond in a pressure-transmitting medium which is consolidated into a pill. Next, the pill is placed into a high pressure/high temperature (HP/HT) press at elevated pressure and elevated temperature for a time sufficient to improve the color of the diamond. The diamond may be exposed at elevated-pressure and elevated-temperature conditions within the graphite-stable region of the carbon-phase diagram—without significant graphitization of the diamond, or above the diamond-graphite equilibrium and within the diamond-stable region of the carbon-phase diagram. Finally, the diamond is recovered from said press. Colorless Type Ia and Type II diamonds may be made by this method.
Abstract:
A method for removing defects at high pressure and high temperature (HP/HT) or for relieving strain in a non-diamond crystal commences by providing a crystal, which contains defects, and a pressure medium. The crystal and the pressure medium are disposed in a high pressure cell and placed in a high pressure apparatus, for processing under reaction conditions of sufficiently high pressure and high temperature for a time adequate for one or more of removing defects or relieving strain in the single crystal.
Abstract:
A jadeite material has a thickness in excess of about 1.0 mm and CIELAB indices of L*>42, a* +6. The grain size of the jadeite material is less than about 30 microns and is an equiaxed grain structure. The jadeite material has an optical transmission peak between 500 and 565 nm with an I/IO optical transmission ratio of over 40%. The first step in making the jadeite material is to wrap a glass block, convertible by HP/HT into jadeite and having a nominal composition of NaAlSi2O6, with a graphite or refractive metal sheet. The wrapped glass block is placed in an HP/HT apparatus, rapidly heated, and subjected therein to a pressure in excess of about 3 GPa and a temperature in excess of about 1000° C. for a time adequate to convert the glass block into jadeite. The jadeite material then is cooled and the pressure subsequently released.
Abstract:
A method for removing defects at high pressure and high temperature (HP/HT) or for relieving strain in a non-diamond crystal commences by providing a crystal, which contains defects, and a pressure medium. The crystal and the pressure medium are disposed in a high pressure cell and placed in a high pressure apparatus, for processing under reaction conditions of sufficiently high pressure and high temperature for a time adequate for one or more of removing defects or relieving strain in the single crystal.
Abstract:
A capsule for containing at least one reactant and a supercritical fluid in a substantially air-free environment under high pressure, high temperature processing conditions. The capsule includes a closed end, at least one wall adjoining the closed end and extending from the closed end; and a sealed end adjoining the at least one wall opposite the closed end. The at least one wall, closed end, and sealed end define a chamber therein for containing the reactant and a solvent that becomes a supercritical fluid at high temperatures and high pressures. The capsule is formed from a deformable material and is fluid impermeable and chemically inert with respect to the reactant and the supercritical fluid under processing conditions, which are generally above 5 kbar and 550° C. and, preferably, at pressures between 5 kbar and 80 kbar and temperatures between 550 ° C. and about 1500° C. The invention also includes methods of filling the capsule with the solvent and sealing the capsule, as well as an apparatus for sealing the capsule.
Abstract:
A capsule for containing at least one reactant and a supercritical fluid in a substantially air-free environment under high pressure, high temperature processing conditions. The capsule includes a closed end, at least one wall adjoining the closed end and extending from the closed end; and a sealed end adjoining the at least one wall opposite the closed end. The at least one wall, closed end, and sealed end define a chamber therein for containing the reactant and a solvent that becomes a supercritical fluid at high temperatures and high pressures. The capsule is formed from a deformable material and is fluid impermeable and chemically inert with respect to the reactant and the supercritical fluid under processing conditions, which are generally above 5 kbar and 550° C. and, preferably, at pressures between 5 kbar and 80 kbar and temperatures between 550° C. and about 1500° C. The invention also includes methods of filling the capsule with the solvent and sealing the capsule, as well as an apparatus for sealing the capsule.
Abstract:
The present invention is directed to a method for changing the color of colored natural diamonds. The method includes placing a discolored natural diamond in a pressure-transmitting medium which is consolidated into a pill. Next, the pill is placed into a high pressure/high temperature (HP/HT) press at elevated pressure and elevated temperature for a time sufficient to improve the color of the diamond. The diamond may be exposed at elevated-pressure and elevated-temperature conditions within the graphite-stable region of the carbon-phase diagram—without significant graphitization of the diamond, or above the diamond-graphite equilibrium and within the diamond-stable region of the carbon-phase diagram. Finally, the diamond is recovered from said press. Colorless Type Ia and Type II diamonds may be made by this method.
Abstract:
A method of forming at least one single crystal of a Group III metal nitride. The method includes the steps of: providing a flux material and a source material comprising at least one Group III metal selected from the group consisting of aluminum, indium, and gallium, to a reaction vessel; sealing the reaction vessel; heating the reaction vessel to a predetermined temperature and applying a predetermined pressure to the vessel. The pressure is sufficient to suppress decomposition of the Group III metal nitride at the temperature. Group III metal nitrides, as well as electronic devices having a Group III metal nitride substrate formed by the method are also disclosed.
Abstract:
A method for detecting whether a natural diamond has been processed at high pressure and high temperature (HPHT) conditions comprises steps of disposing the diamond in a cyrostat that is provided at temperatures equal to or less than liquid nitrogen; illuminating the diamond with a laser beam; recording an optical spectrum of the diamond with a photoluminescence spectrometer; and examining the optical spectrum of the diamond to detect an absence of selected photoluminescent spectral lines. The invention also sets forth a method for predicting whether a natural diamond has been treated under HPHT conditions