Abstract:
A composite photonic crystal comprising an inverse opal structure defining an ordered array of voids with a filler composition received within the voids. A property of the filler composition changes in response to a stimulus, such as a temperature change, thereby changing the band gap of radiation that is reflected by the composite photonic crystal.
Abstract:
A method of fiber formation by electrical-mechanical spinning is disclosed. A liquid starting material is fed to a rotating annular member such as a spinning cup. The liquid material is directed by centrifugal force to the periphery of the annular member where it is expelled in fibrous form. An electric charge is imposed on the liquid while on the annular member or while immediately being expelled from the annular member.
Abstract:
Described is an improved process for producing hydrophobic particulate inorganic oxides useful for reinforcing polymeric compositions, e.g., rubber, by using a certain amount of hydrophobizing agents in an aqueous suspension of inorganic oxide having a pH of 2.5 or less and increasing the pH of the suspension after hydrophobizing the filler.
Abstract:
This invention relates to a slurry composition and a method of its preparation. In particular, the slurry composition of the present invention includes a silica wherein the silica comprises a surface modification. The silica-based slurry of the present invention is suitable for polishing articles and especially useful for chemical-mechanical planarization (“CMP”) of semiconductor and other microelectronic substrates.
Abstract:
A process for converting at least one olefin and at least one isoparaffin to a diesel fuel blending component comprising the steps of contacting the olefin and the isoparaffin with a catalyst comprising an acidic solid comprising a Group IVB metal oxide modified with an oxyanion of a Group VIB metal to provide a diesel fuel. Process conditions can be varied to favor the formation of gasoline, distillate, lube range products or mixtures thereof.
Abstract:
At least one olefin and at least one isoparaffin are converted to a diesel fuel blending component by contacting the olefin and the isoparaffin with a catalyst selected from MCM-22, MCM-36, MCM-49, and MCM-56 to provide a product containing a diesel fuel.
Abstract:
This invention relates to a new form of crystalline material identified as mordenite-type, to a new and useful method for synthesizing said crystalline material and to use of said crystalline material prepared in accordance herewith as a catalyst for organic compound, e.g. hydrocarbon compound, conversion.
Abstract:
This invention relates to a new form of crystalline material identified as having the structure of ZSM-35, to a new and useful method for synthesizing said crystalline material using 1,4-diaminocyclohexane as directing agent, and to use of said crystalline material prepared in accordance herewith as a catalyst for organic compound, e.g., hydrocarbon compound, conversion.
Abstract:
This invention relates to electromagnetically induced thermal activation method and apparatus for in-situ preparation of samples including zeolite catalyst. More particularly, the invention relates to preparation of samples for IR spectroscopic characterization analysis. The technique is based on electromagnetically introduced thermal treatment of a catalyst situated in a specially designed vacum cell which is housed in the sample compartment of an IR analyzer. The sample is selectively heated by adsorption of direct infrared radiation from a laser. The sample is supported on a negligible mass which preferably comprises a wire made of nichrome.
Abstract:
The acidity of a zeolite catalyst is reduced by calcination in an essentially water-free atmosphere at temperatures above 700.degree. C., preferably from 725.degree. to 800.degree. C., to reduce the alpha value to less than 10 percent of its original value. The low acidity catalysts produced in this way may be used for conversions requiring low acidity, shape selective catalysis, including conversion of oxygenates to hydrocarbons. The calcined, low acidity catalysts exhibit improved selectivity to certain desired products.