摘要:
Techniques for transporting messages for location services (LCS) are described. A Mobility Management Entity (MME) may have a location session with an Evolved Serving Mobile Location Center (E-SMLC) to provide location services for a User Equipment (UE). The UE may exchange LCS-related messages with the E-SMLC to obtain location services. In an aspect, LCS-related messages exchanged between the UE and the E-SMLC may be encapsulated in Non-Access Stratum (NAS) messages and transported via the MME and a base station. In another aspect, a routing identifier (ID) may be used to associate messages exchanged between the UE and the MME with the location session between the MME and the E-SMLC for the UE. Each NAS message exchanged between the MME and the UE may include the routing ID, which may enable the MME to associate each NAS message from the UE with the location session between the MME and the E-SMLC.
摘要:
Techniques for maintaining location continuity for a user equipment (UE) following handover are described. The UE communicates with a first radio access network (RAN) and is served by a source serving node and a source location server prior to handover. The UE communicates with a second RAN and is served by a target serving node and a target location server after the handover. In an aspect, location continuity may be maintained for the UE by transferring an identity of the target serving node to a location server during handover of the UE. In one design, the target serving node sends its identity to the target location server, which updates a Location and Routing Function (LRF) serving the UE. In another design, for handover from packet-switched domain to circuit-switched domain, the source serving node sends the target serving node identity to the source location server, which updates the LRF.
摘要:
Techniques for performing location logging and location and time based filtering are described. In one design of location logging, a terminal periodically determines its location, e.g., during its paging slots. The terminal determines whether there is a change in its location and stores its location if a change in location is detected. In one design of location and time based filtering, the terminal obtains a location and time criterion with a target area and a time period. The terminal determines its location during the time period, e.g., based on the location log. The terminal evaluates the location and time criterion based on the target area and its location during the time period, e.g., based on at least one sector ID for the target area and one or more sector IDs for its location. The terminal determines whether to download and/or present broadcast information based on the result of the evaluation.
摘要:
Techniques for supporting network-initiated location services for a terminal are described. A location server may not be able to reach the terminal in a normal manner in certain operating scenarios. The terminal may perform registration with the location server if the terminal determines that it may not be reachable by the location server in the normal manner. For the registration, the terminal may identify itself to the location server, instigate mutual authentication of the terminal and the location server, and provide an Internet Protocol (IP) address of the terminal to the location server. The terminal may perform registration with the location server whenever the IP address changes and/or periodically whenever a timer expires. The terminal may set the timer to a value received from the location server. The location server may use the IP address to send messages to the terminal for network-initiated location services.
摘要:
Techniques for transferring new capability information in an efficient and backward compatible manner are described. A user equipment (UE) may send a new capability indicator to a wireless network to indicate that the UE has new capability information to send. This new capability indicator may be implemented with a spare bit in an information element included in an initial message sent to the network. The network may request for the information or indicate that it can receive the information. The UE may then send the new capability information to the network upon receiving the request or the indication. Alternatively, the network may convey that it supports transfer of new capability information, e.g., via a broadcast message or a unicast message. The UE may then send new capability information at any time to the network, without having to send the new capability indicator.
摘要:
Techniques for routing an emergency call originated by a mobile station via a femto access point (FAP) in a wireless network and for locating the mobile station are described. In an aspect, the emergency call may be routed to an appropriate emergency center based on location information for the FAP. In one design, the location information for the FAP may include a macro cell identity (ID) and/or a macro Mobile Switching Center (MSC) ID determined based on the FAP location. The macro cell ID and/or the macro MSC ID may be assigned to the FAP and used to access a database, which may store routing information for emergency centers versus cell IDs and MSC IDs. In another design, the location information for the FAP may include a location estimate for the FAP. The location estimate may be used to access a geographic database, which may store routing information for emergency centers for different geographic areas.
摘要:
Techniques for configuring a Home evolved Node B (HeNB) in a location server and positioning the HeNB are disclosed. In one aspect, location for a HeNB is supported based on LTE Positioning Protocol (LPP) messages. The HeNB communicates LPP messages with a location server. These LPP messages are terminated at the HeNB instead of a UE. At least one location transaction for the HeNB can be performed to configure in the location server and/or locate the HeNB based on the LPP messages. In another aspect, location for a HeNB is supported based on an embedded UE in the HeNB. The HeNB establishes a location session with a location server based on an embedded UE ID, which is assigned to the HeNB and recognized by the location server as being for a HeNB instead of a UE. At least one location transaction for the HeNB is performed during the location session.
摘要:
The subject matter disclosed herein relates to a system and method for negotiating a version of Secure User Plane Location (SUPL) between a network entity and a SUPL enabled terminal. In a particular implementation, a SUPL initiation message is transmitted from a network entity to a SUPL entity, where the SUPL initiation message identifies a plurality of SUPL versions capable of supporting a desired service. A response is received from the SUPL entity that is based, at least in part, on an ability of the SUPL entity to support at least one of the plurality of versions.
摘要:
A system and method are disclosed to support Voice Call Continuity (VCC) for emergency calls. The system includes a VCC Application in a visited internet-protocol multimedia subsystem (IMS) to facilitate domain transfers between the IMS subsystem and a circuit-switched (CS) subsystem. The system further includes an emergency call session control function (E-CSCF) subsystem in the visited IMS subsystem that is operatively coupled to the VCC Application to facilitate domain transfers between the IMS subsystem and the CS subsystem.
摘要:
Techniques for configuring a Home evolved Node B (HeNB) in a location server and positioning the HeNB are disclosed. In one aspect, location for a HeNB is supported based on LTE Positioning Protocol (LPP) messages. The HeNB communicates LPP messages with a location server. These LPP messages are terminated at the HeNB instead of a UE. At least one location transaction for the HeNB can be performed to configure in the location server and/or locate the HeNB based on the LPP messages. In another aspect, location for a HeNB is supported based on an embedded UE in the HeNB. The HeNB establishes a location session with a location server based on an embedded UE ID, which is assigned to the HeNB and recognized by the location server as being for a HeNB instead of a UE. At least one location transaction for the HeNB is performed during the location session.