Abstract:
A process for the production of animal feed additives from fermentation broth containing L-lysine is disclosed. The process does not require filtering of biomass in order to remove the biomass and produces granulated lysine of controllable lysine content with a high bulk density, low viscosity, and a low hygroscopic property which does not require the addition of an anti-absorptive substance. In this process, a lysine fermentation broth produced after slant culture, flask culture, seed process, and cultivation process is concentrated to a solid content of about 44˜52%. A product with low hygroscopicity, high bulk density, and the intended amount of contents is produced after being mixed with substances for controlling the amount of contents and granulated by coating the surface of the seeds. This process enables a production of animal feed additives having a lysine-HCl content of at least 65%, a water content of at most 3%, and a bulk density of 670±50 kg/m3.
Abstract translation:公开了从含有L-赖氨酸的发酵液中生产动物饲料添加剂的方法。 该方法不需要过滤生物质以除去生物质并产生具有高堆积密度,低粘度和不需要添加抗吸收物质的低吸湿性的可控赖氨酸含量的粒状赖氨酸。 在此过程中,将倾斜培养,烧瓶培养,种子处理和培养过程后产生的赖氨酸发酵液浓缩至固体含量约44〜52%。 在与用于控制含量量的物质混合并通过涂覆种子表面而造粒的物质混合后,产生具有低吸湿性,高堆积密度和预期含量的产品。 该方法能够生产具有至少65%的赖氨酸-HCl含量,至多3%的水含量和670±50kg / m 3的堆积密度的动物饲料添加剂。
Abstract:
A flat panel display device and a source driver circuit for the flat panel display device are provided for performing multiple driving operations within a unit sourcing period. In the flat panel display device, multiple driving operations are performed within the unit sourcing period, and source voltages are supplied to a selected number of data lines in each driving operation. In this case, one DAC is driven to generate source voltages for a plurality of data lines. In the flat panel display device, the number of the DACs is reduced and the overall layout area is greatly reduced. Also, standby power consumption can be greatly reduced due to the reduced number of amplifiers. Since the source voltages provided by the same amplifier are provided to adjacent data lines, a metal layer can be easily wired in the display panel.
Abstract:
Provided are a method of recovering L-threonine from the fermentation broth of an L-threonine producing microorganism, comprising: separating microbial bodies from the L-threonine containing fermentation broth obtained by culturing an L-threonine producing microorganism and filtering the separated fermentation broth to obtain a filtrate; concentrating the filtrate; and reacting the concentrated filtrate with a nonsolvent to obtain crystalline L-threonine, crystalline L-threonine recovered by the method, and a feed additive containing the crystalline L-threonine recovered by the method.
Abstract:
Provided are a method for preparing a granular animal feed additive and the granular animal feed additive prepared by the method. The method includes: filtering, with a membrane filter, a fermentation broth obtained from a lysine producing microorganism cultured in a lysine producing condition to obtain a lysine-containing filtrate and a microorganism-containing sludge; drying the filtrate to obtain a concentrate with a total solid content of 48 to 52 wt %; granule-drying the concentrate at a temperature of 50° C. to 60° C. to obtain granules; and coating the granules with a coating agent containing one or more selected from the group consisting of the sludge, a diluent or a free lysine as a lysine content adjustor, and a moisture prevention agent, to obtain lysine granules having the following properties: Lysine content (lysine sulfate)65% or more Grain size 300–1,200 μm, 90% or more Apparent density 620–720 kg/m3 Protein content 10–15% Total sugar content >0–1% Inorganic material content >0–3% Water content >0–3% Carboxylic acid content >0–8% SO4− ion content 20–25%.
Abstract:
An input buffer capable of achieving quick response. The input buffer includes first and second direct-current (DC) voltage controllers and first and second drivers. The first and second DC voltage controllers generate first and second alternating current (AC) signals having AC voltage components of the buffer input signal reflected thereon, respectively. The first driver drives the voltage level of a buffer output signal to the level of a first voltage, that is, a power supply voltage, in response to the first AC signal. The second driver drives the voltage level of a buffer output signal to the level of a second voltage, that is, a ground voltage, in response to the second AC signal. The first and second AC signals respond to a buffer input signal quickly. The first and the second drivers drive the levels of the buffer output signal to the power supply voltage level and the ground voltage level quickly and by a large amount. Therefore, the input buffer can generate a buffer output signal having a large amplification factor and a quick response characteristic even if a buffer input signal having small amplitude is input.
Abstract:
The present invention discloses a mask set for compensating for a misalignment between the patterns and method of compensating for a misalignment between the patterns. A mask set of the present invention comprises a first mask consisted of a mask substrate on which a main pattern and a plurality of sub-patterns are formed, said sub-patterns formed at a side of the main pattern; a second mask consisted of a mask substrate on which a plurality of hole patterns are formed, the hole patterns corresponded to spaces between the main pattern and the sub-patterns of the first mask, respectively when the first and second mask are overlapped to each other; and a third mask consisted of mask substrate on which a plurality of bar patterns are formed, the bar patterns corresponded to the hole patterns of the second mask, respectively when the second and third mask are overlapped to each other.
Abstract:
The present invention discloses a mask set for compensating for a misalignment between the patterns and method of compensating for a misalignment between the patterns. A mask set of the present invention comprises a first mask consisted of a mask substrate on which a main pattern and a plurality of sub-patterns are formed, said sub-patterns formed at a side of the main pattern; a second mask consisted of a mask substrate on which a plurality of hole patterns are formed, the hole patterns corresponded to spaces between the main pattern and the sub-patterns of the first mask, respectively when the first and second mask are overlapped to each other; and a third mask consisted of mask substrate on which a plurality of bar patterns are formed, the bar patterns corresponded to the hole patterns of the second mask, respectively when the second and third mask are overlapped to each other.
Abstract:
A method comprising: (a) enzymatically processing an O-acetylhomoserine (OAHS) fermentation liquor to produce L-methionine and an acetate source; (b) separating at least a portion of said L-methionine from at least a fraction of said acetate source to form separated L-methionine and a residual liquor comprising an acetate-source; and (c) recovering at least a portion of said acetate source from said residual liquor as recovered acetate.
Abstract:
The present invention relates to a method for separating and purifying 1,4-diaminobutane at high purity and high yield from a fermented solution comprising 1,4-diaminobutane, through cell mass removement, desalination, concentration, impurities removal, and recovery. Also, provided is a method for separating and purifying 1,4-diaminobutane at high purity and high yield from a fermented solution 1,4-diaminobutane, through cell mass removement, desalination, low-temperature concentration, crystallization, filtration, high-temperature concentration and distillation.
Abstract:
The present invention relates to a method for separating and purifying 1,4-diaminobutane at high purity and high yield from a fermented solution comprising 1,4-diaminobutane, through cell mass removement, desalination, concentration, impurities removal, and recovery. Also, provided is a method for separating and purifying 1,4-diaminobutane at high purity and high yield from a fermented solution 1,4-diaminobutane, through cell mass removement, desalination, low-temperature concentration, crystallization, filtration, high-temperature concentration and distillation.