Abstract:
A battery connection member 25 configured to connect a plurality of batteries 29 in parallel includes a main conductive path portion 25a and a plurality of connection terminals 25b each configured to connect the main conductive path portion 25a to one of electrodes of each battery 29. The connection terminals 25b include fuse portions 25c configured to be blown when a current equal to or higher than a predetermined value flows. When the plurality of batteries 29 are connected in parallel by the battery connection member 25, the fuse portions 25c are arranged in space between the main conductive path portion 25 and the batteries 29.
Abstract:
A battery module 100 includes a plurality of cells aligned and accommodated in a case 10, wherein a positive electrode external terminal 20 and a negative electrode external terminal 21 which are connected to electrodes of the plurality of cells are disposed in parallel on a first side surface 11 of the case 10 at a predetermined interval, a pair of recessed sections 30, 31 are formed on a second side surface 12 adjacent to the first side surface 11 of the case 10 at a same interval as the predetermined interval, a first portion 51 of an L-shaped electrode piece 50 is selectively attachable to the positive electrode external terminal 20 or the negative electrode external terminal 21, and a second portion 52 of the electrode piece 50 is selectively attachable to any one of the pair of recessed sections 30, 31.
Abstract:
The battery module includes: a plurality of batteries; a housing 50 in which the plurality of batteries are aligned and stored; and a cooling pipe 70 provided along the plurality of batteries in the housing 50, the cooling pipe 70 being filled with a cooling medium, wherein the cooling pipe 70 is made of a material which melts when the temperature of the battery reaches or exceeds a predetermined temperature.
Abstract:
A battery assembly 200 includes: a block 80 including housings 80a each housing cells 100; first and second connection plates 21 and 22 connecting the cells 100 in parallel; and a spacer 90 disposed between the cell 100 and the first connection plate 21. The block 80 has a pierced part 80b penetrating the block 80 along the axial direction. The spacer 90 has a hollow part 90a penetrating the spacer 90 along the axial direction. A battery module is formed by combining the battery assemblies 200 such that the pierced part 80b of one of adjacent ones of the battery assemblies 200 disposed along the stacking direction is engaged with the hollow part 90a of the other battery assembly 200. The pierced parts 80b and the hollow parts 90a of the battery assemblies 200 communicate with each other along the axial direction.
Abstract:
A battery module includes a battery unit, a housing, a lid, and a heat-absorbing member. The battery unit includes two or more battery cells. The housing includes a storage part having an open end on at least one surface, and the storage part stores the battery unit. The lid has an opened part, and covers the open end of the housing. The heat-absorbing member is provided in contact with each side surface of each battery unit, and encloses heat-absorbing agent made of liquid or gel fluid.
Abstract:
The temperature adjusting unit (5) is made of a resin-molded article in which a first flat portion (73), a second flat portion (75), and a side wall portion (77) are integrally formed. A holding portion (81) and a flow path (85) are separated by the side wall portion (77). Each cell (21) is held in close contact with the holding portion (81) separated by the side wall portion (77).
Abstract:
A battery connection member 25 configured to connect a plurality of batteries 29 in parallel includes a main conductive path portion 25a and a plurality of connection terminals 25b each configured to connect the main conductive path portion 25a to one of electrodes of each battery 29. The connection terminals 25b include fuse portions 25c configured to be blown when a current equal to or higher than a predetermined value flows. When the plurality of batteries 29 are connected in parallel by the battery connection member 25, the fuse portions 25c are arranged in space between the main conductive path portion 25 and the batteries 29.
Abstract:
A power apparatus of the present invention includes a main body case, a plurality of power supply elements provided inside the main body case, and a fire-extinguishing agent tank facing each of the plurality of power supply elements. An opening part for sensing heat of the power supply elements and substantially opening the fire-extinguishing agent tank is provided between the power supply elements and the fire-extinguishing agent tank facing the power supply elements, thus enabling the size to be reduced.
Abstract:
A battery module is provided in which a signal line is prevented from the influence of noise caused by an internal current output line.A battery module includes: a plurality of cells 100; a current conduction member 34 electrically connecting electrode terminals of the plurality of cells; and a signal line 50 configured to measure capacitance of the plurality of cells, wherein the current conduction member includes a parallel section including two members which are opposite in direction of a current flowing therethrough and are arranged substantially parallel to each other, and a connection section electrically connecting the two members at one end of the parallel section, and the signal line is arranged nearly equidistant from the two members, and extends substantially parallel to the two members to approach the connection section.
Abstract:
A battery pack includes a plurality of battery modules including a plurality of cells 100 aligned and accommodated in a case, wherein a battery assembly 200 in which the plurality of cells 100 are aligned in a row is used as a unit, and the multiple ones of the battery assembly 200 are aligned in each battery module. The battery modules are a first battery module 300 in which the plurality of battery assemblies 200 are aligned in parallel and second battery modules 400A, 400B in which the plurality of battery assemblies 200 are aligned in series, and the first battery module 300 and the second battery modules 400A, 400B are combined with each other to form the battery pack.