Abstract:
A fuel cell system including a fuel cell, constructed as an integrated stack comprising a laminate, produced by stacking a plurality of cells between two end plates, and a fuel supply device for supplying fuel to the fuel cell. In this fuel cell system, a plurality of individual fuel supply ports, for supplying fuel independently from the fuel supply device to each of the plurality of cells, are formed on the end plates, thus forming individual fuel supply channels that deliver fuel from the plurality of individual fuel supply ports to the fuel electrodes of the corresponding cells, respectively. This fuel cell system is compact, and enables equal supply of a predetermined quantity of fuel to each of the plurality of cells.
Abstract:
A fuel cell system includes a power-generating stack; a fuel feeder for supplying fuel to an anode of the power-generating stack; an air feeder for supplying air to a cathode of the power-generating stack; and an gas-liquid separator for separating water from a gas-liquid mixture. The gas-liquid mixture includes water and water vapor produced at the cathode and gas passing through the cathode. The gas-liquid separator includes a water retainer. This water retainer holds water and water vapor, which is produced at the cathode, in the gas-liquid mixture.
Abstract:
In a fuel cell stack, a cell stack formed by laminating a membrane electrode assembly and a separator and sandwiching them from the both sides in the laminating direction with a pair of end plates is fastened by being tightened in the laminating direction with a first plate spring. The first plate spring includes two arm sections for pressing the pair of end plates and a connecting section connecting the arm sections, and has a C-shaped cross-section.
Abstract:
To prevent the flooding phenomenon at the cathode in a unit cell where the temperature is relatively low or the supply of air is small, a fuel cell stack includes at least three flat unit cells stacked with separators interposed therebetween, the unit cells comprising an anode, a cathode and an electrolyte membrane sandwiched therebetween, and having an oxidant channel formed on the surface of the separator adjacent to the cathode, and the anode and the cathode comprising a catalyst layer attached to the electrolyte membrane and a diffusion layer, wherein the cross-sectional area of the inlet side of the oxidant channel, the area of the cathode catalyst layer, the thickness of the electrolyte membrane or the amount of a water repellent contained in the combination of the cathode and the oxidant channel is the largest in at least one of the unit cells at the ends of the stack.
Abstract:
A fuel cell system includes: a fuel cell including an anode, a cathode, and an electrolyte interposed between the anode and the cathode; and a purifying apparatus including a catalyst layer that purifies an effluent discharged from the anode. The purifying apparatus has a porous sheet including the catalyst layer and two flow paths disposed on both sides thereof. One of the flow paths has an inlet into which the effluent discharged from the anode is introduced, and the other flow path has an inlet into which air is introduced and an outlet. The effluent discharged from the anode is passed through the porous sheet for purification and then discharged from the outlet.
Abstract:
A mixing pump device (1) used for fuel cells etc. has two inflow paths (51, 52), inflow side active valves (21, 22) arranged at the two inflow paths (51, 52), respectively, a pump chamber (11) into which liquids flow via each of two inflow paths (51, 52), four outflow paths (61, 62, 63, 64) for allowing a liquid mixed in the pump chamber (11) to flow out, and outflow side active valves (31, 32, 33, 34) arranged at the four outflow paths (61, 62, 63, 64), respectively. Further, a chamber (82) is formed between the pump chamber (11) and a branch point (80) at which the outflow paths (61, 62, 63, 64) branch off. The construction prevents a variation in the concentration of the liquid allowed to flow out of the outflow paths (61, 62, 63, 64) after the mixing in the pump chamber (11).
Abstract:
A direct oxidation fuel cell includes at least one unit cell. The at least one unit cell includes an anode, a cathode, and a hydrogen-ion conductive polymer electrolyte membrane interposed between the anode and the cathode. The anode includes: a catalyst layer in contact with the polymer electrolyte membrane; and a diffusion layer. The diffusion layer includes: a porous composite layer containing a water-repellent binding material and an electron-conductive material; a first conductive porous substrate provided on the anode-side separator side of the porous composite layer; and a second conductive porous substrate provided on the catalyst layer side of the porous composite layer.
Abstract:
For give a direct methanol fuel cell which secures the fuel supply to the catalyst layer, reliably discharge generated carbon dioxide gas, and has excellent electricity generation ability, at least a portion of the anode side flow path is divided by a film having water-repellency and gas permeability to a first flow path portion positioned at the membrane electrode assembly side and a second flow path portion positioned at the bottom side of the anode side flow path where a fuel mainly flows in the first flow path portion and carbon dioxide mainly flows in the second flow path portion.
Abstract:
A fuel cell system including a fuel cell, constructed as an integrated stack comprising a laminate, produced by stacking a plurality of cells between two end plates, and a fuel supply device for supplying fuel to the fuel cell. In this fuel cell system, a plurality of individual fuel supply ports, for supplying fuel independently from the fuel supply device to each of the plurality of cells, are formed on the end plates, thus forming individual fuel supply channels that deliver fuel from the plurality of individual fuel supply ports to the fuel electrodes of the corresponding cells, respectively. This fuel cell system is compact, and enables equal supply of a predetermined quantity of fuel to each of the plurality of cells.
Abstract:
In a sealed battery pack comprising a plurality of serially disposed cells in which power generating elements are housed in prismatic cell cases and the openings thereof are sealed, the plurality of serially disposed cells are housed in a cooling box, and the top openings in the cooling box and the openings in the various cell cases of the cells are sealed by integrating lids. Coolant passages on both sides between the side surfaces of the cells and the side walls on both sides of the cooling box in the cell arrangement direction, and coolant passages between the cases of the cells are formed so as to communicate with each other, so that all of the side surfaces of the cells are forcibly cooled by a coolant.