摘要:
An interleaver is constructed based on the joint constraints imposed in the channel and the code domains. A sequentially optimal algorithm is used for mapping bits in the inter-symbol interference (ISI) domain to the code domain by taking into account the ISI memory depth and the connectivity of the nodes within the parity check matrix. Primary design constraints are considered such as the parallelism factor so that the proposed system is hardware compliant in meeting high throughput requirements.
摘要:
To allow a single LDPC decoder to operate on both 512 B blocks and 4 KB blocks with comparable error correction performance, 512 KB blocks are interlaced to form a 1 KB data sequence, and four sequential 1 KB data sequences are concatenated to form a 4 KB sector. A de-interlacer between the detector and decoder forms multiple data sequence from a single data sequence output by the detector. The multiple data sequences are separately processed by a de-interleaver between the de-interlacer and the LDPC decoder, by the LDPC decoder, and by an interleaver at the output of the LDPD decoder. An interlacer recombines the multiple data sequences into a single output. Diversity may be improved by feeding interleaver seeds for respective codewords into the de-interleaver and interleaver during processing.
摘要:
A system and method is capable of performing a Low Density Parity Check (LDPC) coding operation on-the-fly without using a generator matrix. The system and method includes an input configured to receive data and an output configured to output a plurality of codewords. The system and method also includes a processor coupled between the input and the output. The processor is configured to encode the received data and produce the plurality of codewords using a plurality of parity bits. The processor creates the plurality of parity bits on-the-fly using a portion of an LDPC matrix and a protograph matrix.
摘要:
To allow a single LDPC decoder to operate on both 512 B blocks and 4 KB blocks with comparable error correction performance, 512 KB blocks are interlaced to form a 1 KB data sequence, and four sequential 1 KB data sequences are concatenated to form a 4 KB sector. A de-interlacer between the detector and decoder forms multiple data sequence from a single data sequence output by the detector. The multiple data sequences are separately processed by a de-interleaver between the de-interlacer and the LDPC decoder, by the LDPC decoder, and by an interleaver at the output of the LDPD decoder. An interlacer recombines the multiple data sequences into a single output. Diversity may be improved by feeding interleaver seeds for respective codewords into the de-interleaver and interleaver during processing.
摘要:
An embodiment of a data-read path includes a defect detector and a data-recovery circuit. The defect detector is operable to identify a defective region of a data-storage medium, and the data-recovery circuit is operable to recover data from the data-storage medium in response to the defect detector. For example, such an embodiment may allow identifying a defective region of a data-storage disk caused, e.g., by a scratch or contamination, and may allow recovering data that was written to the defective region.
摘要:
An embodiment of a data-read path includes a defect detector and a data-recovery circuit. The defect detector is operable to identify a defective region of a data-storage medium, and the data-recovery circuit is operable to recover data from the data-storage medium in response to the defect detector. For example, such an embodiment may allow identifying a defective region of a data-storage disk caused, e.g., by a scratch or contamination, and may allow recovering data that was written to the defective region.
摘要:
An interleaver is constructed based on the joint constraints imposed in the channel and the code domains. A sequentially optimal algorithm is used for mapping bits in the inter-symbol interference (ISI) domain to the code domain by taking into account the ISI memory depth and the connectivity of the nodes within the parity check matrix. Primary design constraints are considered such as the parallelism factor so that the proposed system is hardware compliant in meeting high throughput requirements.