Abstract:
A non-invasive thermal dispersion flow meter with chronometric monitor for fluid leak detection includes a heater, an ambient temperature sensor and a flow rate sensor which are configured to sense the temperature of a fluid in a conduit, and then monitor the flow of that fluid through the conduit. Based upon the ambient temperature sensor readings, the flow rate sensor and heater may be adjusted to optimize the operation of the system to detect leaks. Based on the sensor readings, the flow may be adjusted to prevent damage and leaks by relieving the system of excess pressure. Geographic location, occupancy sensors and occupant identifiers are used to control the system to facilitate operation and minimize leak damage when occupants are away.
Abstract:
A non-invasive thermal dispersion flow meter with chronometric monitor for fluid leak detection includes a heater, an ambient temperature sensor and a flow rate sensor which are configured to sense the temperature of a fluid in a conduit, and then monitor the flow of that fluid through the conduit. Based upon the ambient temperature sensor readings, the flow rate sensor and heater may be adjusted to optimize the operation of the system to detect leaks. Based on the sensor readings, the flow may be adjusted to prevent damage and leaks by relieving the system of excess pressure. Geographic location, occupancy sensors and occupant identifiers are used to control the system to facilitate operation and minimize leak damage when occupants are away.
Abstract:
A non-invasive thermal dispersion flow meter with chronometric monitor for fluid leak detection includes a heater, an ambient temperature sensor and a flow rate sensor which are configured to sense the temperature of a fluid in a conduit, and then monitor the flow of that fluid through the conduit. The fluid flow sensor is incorporated into a Wheatstone bridge circuit, which is used to provide increased sensitivity to the outputs of the sensors, Based upon the ambient temperature sensor readings, the flow rate sensor and heater may be adjusted to optimize the operation of the system to detect leaks. An alternative embodiment utilizes a single sensor and separate heater which work together to determine heat propagation times which in turn is used to calculate flow rate. Based on the sensor readings, the flow may be adjusted to prevent damage and leaks by relieving the system of excess pressure.
Abstract:
A non-invasive thermal dispersion flow meter with chronometric monitor for fluid leak detection includes a heater, an ambient temperature sensor and a flow rate sensor which are configured to sense the temperature of a fluid in a conduit, and then monitor the flow of that fluid through the conduit. Based upon the ambient temperature sensor readings, the flow rate sensor and heater may be adjusted to optimize the operation of the system to detect leaks. Based on the sensor readings, the flow may be adjusted to prevent damage and leaks by relieving the system of excess pressure. Geographic location, occupancy sensors and occupant identifiers are used to control the system to facilitate operation and minimize leak damage when occupants are away.
Abstract:
A non-invasive thermal dispersion flow meter with chronometric monitor for fluid leak detection includes a heater, an ambient temperature sensor and a flow rate sensor which are configured to sense the temperature of a fluid in a conduit, and then monitor the flow of that fluid through the conduit. The fluid flow sensor is incorporated into a Wheatstone bridge circuit which is used to provide increased sensitivity to the outputs of the sensors. Based upon the ambient temperature sensor readings, the flow rate sensor and heater may be adjusted to optimize the operation of the system to detect leaks. An alternative embodiment utilizes a single sensor and separate heater which work together to determine heat propagation times which in turn is used to calculate flow rate.
Abstract:
Methods for Ultrasonic Flow Metering, Ultrasonic Flow Meter Calibration, and Ultrasonic Fluid Characterization. Focusing on the governing principles and equations of flow measurement for ultrasonic flow meters, using temperature referenced differential and absolute time of flight measurements to characterize fluid motion. As well as, experimental solutions to meter calibration constants, thermal expansion, concentration change in fluid validation/correction using a ratiometric approach comparing expected and measured zero flow measurements, change of fluid in process validation/correction using acoustic properties of a specific fluid, and zero flow correlations/validation based on time of flight and temperature, referenced to historically captured data and the acoustic properties of the fluid in the process.
Abstract:
A non-invasive thermal dispersion flow meter with chronometric monitor for fluid leak detection includes a heater, an ambient temperature sensor and a flow rate sensor which are configured to sense the temperature of a fluid in a conduit, and then monitor the flow of that fluid through the conduit. The fluid flow sensor is incorporated into a Wheatstone bridge circuit, which is used to provide increased sensitivity to the outputs of the sensors, Based upon the ambient temperature sensor readings, the flow rate sensor and heater may be adjusted to optimize the operation of the system to detect leaks. An alternative embodiment utilizes a single sensor and separate heater which work together to determine heat propagation times which in turn is used to calculate flow rate. Based on the sensor readings, the flow may be adjusted to prevent damage and leaks by relieving the system of excess pressure.
Abstract:
A non-invasive thermal dispersion flow meter with chronometric monitor for fluid leak detection includes a heater, an ambient temperature sensor and a flow rate sensor which are configured to sense the temperature of a fluid in a conduit, and then monitor the flow of that fluid through the conduit. Based upon the ambient temperature sensor readings, the flow rate sensor and heater may be adjusted to optimize the operation of the system to detect leaks. Based on the sensor readings, the flow may be adjusted to prevent damage and leaks by relieving the system of excess pressure. Geographic location, occupancy sensors and occupant identifiers are used to control the system to facilitate operation and minimize leak damage when occupants are away.
Abstract:
A non-invasive thermal dispersion flow meter with chronometric monitor for fluid leak detection includes a heater, an ambient temperature sensor and a flow rate sensor which are configured to sense the temperature of a fluid in a conduit, and then monitor the flow of that fluid through the conduit. The fluid flow sensor is incorporated into a Wheatstone bridge circuit which is used to provide increased sensitivity to the outputs of the sensors. Based upon the ambient temperature sensor readings, the flow rate sensor and heater may be adjusted to optimize the operation of the system to detect leaks. An alternative embodiment utilizes a single sensor and separate heater which work together to determine heat propagation times which in turn is used to calculate flow rate.
Abstract:
A non-invasive thermal dispersion flow meter with chronometric monitor for fluid leak detection includes a heater, an ambient temperature sensor and a flow rate sensor which are configured to sense the temperature of a fluid in a conduit, and then monitor the flow of that fluid through the conduit. The fluid flow sensor is incorporated into a Wheatstone bridge circuit which is used to provide increased sensitivity to the outputs of the sensors. Based upon the ambient temperature sensor readings, the flow rate sensor and heater may be adjusted to optimize the operation of the system to detect leaks. An alternative embodiment utilizes a single sensor and separate heater which work together to determine heat propagation times which in turn is used to calculate flow rate.