Abstract:
Provided are a method of generating plasma and a method of fabricating a semiconductor device including the method, which may improve selectivity in an etching process and minimize damage to layers. The method of generating plasma includes generating first plasma by supplying at least one first process gas into a first remote plasma source (RPS) and applying first energy having a first power at a first duty ratio, and generating second plasma by supplying at least one second process gas into a second RPS and applying second energy having a second power at a second duty ratio.
Abstract:
A laundry treating apparatus, e.g., washing machine, and a tub provided in the cabinet. A drum is rotatably provided in the tub for receiving laundry, and a gasket is provided between the cabinet and the tub. A plurality of spray nozzles are provided at the gasket for spraying wash water into the drum.
Abstract:
An electrode assembly and a secondary battery including the electrode assembly are disclosed. The electrode assembly includes a first electrode, a second electrode, and a separator disposed between the first and second electrodes. A film is disposed on at least one edge of at least one of the first and second electrodes.
Abstract:
A method for forming a feature in an etch layer is provided. A photoresist layer is formed over the etch layer. The photoresist layer is patterned to form photoresist features with photoresist sidewalls. A control layer is formed over the photoresist layer and bottoms of the photoresist features. A conformal layer is deposited over the sidewalls of the photoresist features and control layer to reduce the critical dimensions of the photoresist features. Openings in the control layer are opened with a control layer breakthrough chemistry. Features are etched into the etch layer with an etch chemistry, which is different from the control layer break through chemistry, wherein the control layer is more etch resistant to the etch with the etch chemistry than the conformal layer.
Abstract:
A method for forming a feature in an etch layer is provided. A photoresist layer is formed over the etch layer. The photoresist layer is patterned to form photoresist features with photoresist sidewalls. A control layer is formed over the photoresist layer and bottoms of the photoresist features. A conformal layer is deposited over the sidewalls of the photoresist features and control layer to reduce the critical dimensions of the photoresist features. Openings in the control layer are opened with a control layer breakthrough chemistry. Features are etched into the etch layer with an etch chemistry, which is different from the control layer break through chemistry, wherein the control layer is more etch resistant to the etch with the etch chemistry than the conformal layer.
Abstract:
A method for forming a feature in an etch layer is provided. A photoresist layer is formed over the etch layer. The photoresist layer is patterned to form photoresist features with photoresist sidewalls. A control layer is formed over the photoresist layer and bottoms of the photoresist features. A conformal layer is deposited over the sidewalls of the photoresist features and control layer to reduce the critical dimensions of the photoresist features. Openings in the control layer are opened with a control layer breakthrough chemistry. Features are etched into the etch layer with an etch chemistry, which is different from the control layer break through chemistry, wherein the control layer is more etch resistant to the etch with the etch chemistry than the conformal layer.
Abstract:
A method for forming dual damascene features in a dielectric layer. Vias are partially etched in the dielectric layer. A trench pattern mask is formed over the dielectric layer. Trenches are partially etched in the dielectric layer. The trench pattern mask is stripped. The dielectric layer is further etched to complete etch the vias and the trenches in the dielectric layer.
Abstract:
Provided are a method of generating plasma and a method of fabricating a semiconductor device including the method, which may improve selectivity in an etching process and minimize damage to layers. The method of generating plasma includes generating first plasma by supplying at least one first process gas into a first remote plasma source (RPS) and applying first energy having a first power at a first duty ratio, and generating second plasma by supplying at least one second process gas into a second RPS and applying second energy having a second power at a second duty ratio.
Abstract:
Provided is a method for washing laundry in a washing machine, wherein the washing machine includes a tub and a drum disposed inside the tub, the method comprising: supplying wash water into the tub; rotating the drum such that the laundry is attached the drum and spraying the wash water changed to whirling water into the drum; and draining the wash water from the tub.
Abstract:
The present invention relates to an operation method of a washing machine for controlling the rotation of a pulsator to enhance cleaning performance, there is provided a method of operating a washing machine having a pulsator rotatably provided in a tub, and the method may include a first cleaning mode having a first process of rotating the pulsator in one direction at a first angle and then rotating it in the other direction at a second angle around the rotation shaft; and a second process of rotating the pulsator in the one direction at a third angle and then rotating it in the other direction at a fourth angle around the rotation shaft, wherein the first angle is greater than the third angle, and the second angle is greater than the fourth angle, and the second angle is greater than the third angle.