Abstract:
An apparatus and method for efficiently metering and transferring a cryogenic liquid, such as liquefied natural gas, from a storage vessel to, for example, a vehicle fuel tank. The apparatus incorporates a programmable controller, a motor-driven pump and a network of conduits with motor-operated valves and liquid sensors for effecting a priming of the pump with liquid free of vapor and a cool-down of the flow passages prior to a transfer operation for ensuring that a vapor-free liquid is delivered. A pair of flow meters, one for liquid and the other for returned vapor, allows a reliable determination of the amount of liquid delivered to--and remaining in--a receiving vessel. The apparatus employs a delivery nozzle with quick-disconnect valved fittings and a delivery nozzle incorporating features which allow it to be handled by an operator without the use of heavy gloves. The method of transferring a cryogenic liquid employs an operating sequence with programmed time delays for ensuring that the liquid pump is properly primed and that the transfer apparatus is cooled down before liquid transfer begins.
Abstract:
A tank for a cryogenic liquid is fitted with a conduit assembly that provides for flow of the cryogenic liquid into and out of the tank, venting of the tank and control of the fill level in the tank. The conduit assembly includes serpentine tubes that extend into an upper region within the inner shell. Within the inner shell, one of the tubes extends downwardly to a lower opening and provides for liquid flow into and out the tank; the other tube has an end with a downwardly facing opening in the upper region whereby vapor can be conducted out of the tank and the fill level is established. A system for effecting pressure management of the cryogenic liquid in the tank includes a conduit network that provides for pressure build as pressure in the conduit network drops and provides for delivery of liquid only to, e.g., a vehicle engine.
Abstract:
An apparatus and method for efficiently metering and transferring a cryogenic liquid, such as liquefied natural gas, from a storage vessel to, for example, a vehicle fuel tank. The apparatus incorporates a programmable controller, a motor-driven pump and a network of conduits with motor-operated valves and liquid sensors for effecting a priming of the pump with liquid free of vapor and a cool-down of the flow passages prior to a transfer operation for ensuring that a vapor-free liquid is delivered. A pair of flow meters, one for liquid and the other for returned vapor, allows a reliable determination of the amount of liquid delivered to--and remaining in--a receiving vessel. The apparatus employs a delivery nozzle with quick-disconnect valved fittings and a delivery nozzle incorporating features which allow it to be handled by an operator without the use of heavy gloves. The method of transferring a cryogenic liquid employs an operating sequence with programmed time delays for ensuring that the liquid pump is properly primed and that the transfer apparatus is cooled down before liquid transfer begins.
Abstract:
An apparatus and method for efficiently metering and transferring a cryogenic liquid, such as liquefied natural gas, from a storage vessel to, for example, a vehicle fuel tank. The apparatus incorporates a programmable controller, a motor-driven pump and a network of conduits with motor-operated valves and liquid sensors for effecting a priming of the pump with liquid free of vapor and a cool-down of the flow passages prior to a transfer operation for ensuring that a vapor-free liquid is delivered. A pair of flow meters, one for liquid and the other for returned vapor, allows a reliable determination of the amount of liquid delivered to--and remaining in--a receiving vessel. The apparatus employs a delivery nozzle with quick-disconnect valved fittings and a delivery nozzle incorporating features which allow it to be handled by an operator without the use of heavy gloves. The method of transferring a cryogenic liquid employs an operating sequence with programmed time delays for ensuring that the liquid pump is properly primed and that the transfer apparatus is cooled down before liquid transfer begins.
Abstract:
A tank for a cryogenic liquid is fitted with a conduit assembly that provides for flow of the cryogenic liquid into and out of the tank, venting of the tank and control of the fill level in the tank. The conduit assembly includes serpentine tubes that extend into an upper region within the inner shell. Within the inner shell, one of the tubes extends downwardly to a lower opening and provides for liquid flow into and out the tank; the other tube has an end with a downwardly facing opening in the upper region whereby vapor can be conducted out of the tank and the fill level is established. A system for effecting pressure management of the cryogenic liquid in the tank includes a conduit network that provides for pressure build as pressure in the conduit network drops and provides for delivery of liquid only to, e.g., a vehicle engine.
Abstract:
A tank for a cryogenic liquid is fitted with a conduit assembly that provides for flow of the cryogenic liquid into and out of the tank, venting of the tank and control of the fill level in the tank. The conduit assembly includes serpentine tubes that extend into an upper region within the inner shell. Within the inner shell, one of the tubes extends downwardly to a lower opening and provides for liquid flow into and out the tank; the other tube has an end with a downwardly facing opening in the upper region whereby vapor can be conducted out of the tank and the fill level is established. A system for effecting pressure management of the cryogenic liquid in the tank includes a conduit network that provides for pressure build as pressure in the conduit network drops and provides for delivery of liquid only to, e.g., a vehicle engine.
Abstract:
A tank for cryogenic liquid fuel includes a tank with inner and outer shells. A support beam with its ends supported in endwalls of the outer shell extends through a central sleeve in the inner shell. Raised formations on the support beam engage the interior of the sleeve to support the inner shell within the outer shell. The sealed space formed between the shells inhibits heat conduction into cryogenic liquid fuel held in the inner shell. Pins extending transversely through the support beam prevent turning of the support beam in its endwall supports and turning of inner shell about the support beam. Getter material and radiation shielding placed about the support beam within the sleeve of the inner shell afford additional impediments to heat transfer into the inner shell.
Abstract:
An apparatus and method for efficiently metering and transferring a cryogenic liquid, such as liquefied natural gas, from a storage vessel to, for example, a vehicle fuel tank. The apparatus incorporates a programmable controller, a motor-driven pump and a network of conduits with motor-operated valves and liquid sensors for effecting a priming of the pump with liquid free of vapor and a cool-down of the flow passages prior to a transfer operation for ensuring that a vapor-free liquid is delivered. A pair of flow meters, one for liquid and the other for returned vapor, allows a reliable determination of the amount of liquid delivered to--and remaining in--a receiving vessel. The apparatus employs a delivery nozzle with quick-disconnect valved fittings and a delivery nozzle incorporating features which allow it to be handled by an operator without the use of heavy gloves. The method of transferring a cryogenic liquid employs an operating sequence with programmed time delays for ensuring that the liquid pump is properly primed and that the transfer apparatus is cooled down before liquid transfer begins.