Abstract:
A molten salt process vessel for treatment of hazardous materials such as explosive or propellant waste, employing a tall, thin vessel with sufficient height that salt splash from the molten salt at the bottom of the vessel can be controlled and hard salt deposits are prevented from forming on the walls which restrict the gas outlet. The vessel, e.g. of cylindrical shape, has an increased height to diameter ratio in the range of about 7:1 to about 12:1, to give additional clearance. As an additional feature the vessel diameter can also be adjusted to create a "necked-down" region just below the gas outlet duct adjacent the top of the vessel to increase product gas velocity of the gas containing entrained salt particles, to prevent sticking of such particles to the vessel walls and restricting the gas outlet duct. A further feature of the invention is the provision of baffles located just above the body of molten salt in the region where temperature is at or above the salt melting point, inhibiting salt splash to the top of the vessel, and permitting molten salt particles striking the baffles to drain back to the body of molten salt.
Abstract:
A process is described for reducing the volume of a liquid waste containing an organic amine chelating agent in which a finely atomized spray of the liquid waste is contacted with a gas stream having a temperature in excess of the thermal decomposition temperature of the chelating agent. The proportions of the hot gas stream and liquid waste are controlled to rapidly evaporate water from the liquid waste and cool the gas to a temperature below the decomposition temperature of the chelating agent in a time of less than about 6 seconds to produce a dry, flowable powder product including the chelating agent.
Abstract:
A method of obtaining magnesium fluoride substantially free from radioactive uranium from a slag containing the same and having a radioactivity level of at least about 7000 pCi/gm. The slag is ground to a particle size of about 200 microns or less. The ground slag is contacted with an acid under certain prescribed conditions to produce a liquid product and a particulate solid product. The particulate solid product is separated from the liquid and treated at least two more times with acid to produce a solid residue consisting essentially of magnesium fluoride substantially free of uranium and having a residual radioactivity level of less than about 1000 pCi/gm. In accordance with a particularly preferred embodiment of the invention a catalyst and an oxidizing agent are used during the acid treatment and preferably the acid is sulfuric acid having a strength of about 1.0 Normal.
Abstract:
Bead ion exchange resin wastes are disposed of by a process which involves spray-drying a bead ion exchange resin waste in order to remove substantially all of the water present in such waste, including the water on the surface of the ion exchange resin beads and the water inside the ion exchange resin beads. The resulting dried ion exchange resin beads can then be solidified in a suitable solid matrix-forming material, such as a polymer, which solidifies to contain the dried ion exchange resin beads in a solid monolith suitable for disposal by burial or other conventional means.
Abstract:
A spray calcination process is provided for decomposing a metal nitrate solution to form fine grain multicomponent metal oxide powders of selected composition of particular utility as superconductor precursor powders. Such precursor powders are produced in bulk quantities as high purity, reproducible, intimately mixed powders for conversion to high temperature superconductors.A metal nitrate solution containing two or more metal constituents in a preselected ratio is sprayed as a finely atomized spray into a spray calcination zone where it is contacted with a hot gas stream for a residence time of less than 15 seconds at a high temperature between 200.degree. C. and 1100.degree. C. sufficient to vaporize the water of the nitrate solution and convert the metal nitrates to their corresponding oxides. The formed metal oxides are recovered from the gas stream as the desired metal oxides powders of selected composition which, where required, may be further sintered to form the desired superconducting metal oxide ceramics such as the Y-Ba-Cu-O and Tl-Ba-Ca-Cu-O superconductors.
Abstract:
A feed system for feeding solid propellant or explosive energetic materials, e.g. in the form of chunks, into a molten salt furnace for destruction of said materials by oxidation with air, while substantially avoiding the danger of detonation of such materials during feeding. The system comprises a feed hopper separated from the molten salt furnace by a barrier such as a concrete wall. The feed hopper is preferably vibrated to move the chunks of waste to an inclined chute which passes through a penetration in the barrier to the furnace, the chute also being preferably vibrated to facilitate passage of the waste material. The chunks of waste are discharged from the inclined chute either directly into the molten salt bath in the furance, or added incrementally thereto by a lock valve arrangement.
Abstract:
An organic waste containing halogen is destroyed by treatment in a molten salt pool comprising a mixture of a basic alkaline earth metal compound with an alkaline earth metal halide. An oxygen-containing gas is introduced into the pool containing the waste to produce a gaseous combustion product and to cause the halogen present in the waste to react with the basic alkaline earth metal compound to produce additional alkaline earth metal halide.
Abstract:
Method for destroying radioactive graphite and silicon carbide in fuel elements containing small spheres of uranium oxide coated with silicon carbide in a graphite matrix, by treating the graphite fuel elements in a molten salt bath in the presence of air, the salt bath comprising molten sodium-based salts such as sodium carbonate and a small amount of sodium sulfate as catalyst, or calcium-based salts such as calcium chloride and a small amount of calcium sulfate as catalyst, while maintaining the salt bath in a temperature range of about 950.degree. to about 1,100.degree. C. As a further feature of the invention, large radioactive graphite fuel elements, e.g. of the above composition, can be processed to oxidize the graphite and silicon carbide, by introducing the fuel element into a reaction vessel having downwardly and inwardly sloping sides, the fuel element being of a size such that it is supported in the vessel at a point above the molten salt bath therein. Air is bubbled through the bath, causing it to expand and wash the bottom of the fuel element to cause reaction and destruction of the fuel element as it gradually disintegrates and falls into the molten bath.
Abstract:
A method of preparing active, sinterable, finely-divided plutonium oxide (PuO.sub.2) powder from plutonium metal is disclosed. The process yields plutonium fissile material which can be easily blended to form a uniformly homogeneous powder for the fabrication of high-quality light water reactor ceramic fuel pellets. Such homogeneous fuels are required to prevent hot spots from developing in a reactor using the fuel.
Abstract:
Ion exchange resin wastes are prepared for disposal by dewatering and/or dehydrating the resins, sealing the pores and recovering the ion exchange resins having radioactive waste products trapped within the sealed pores.