Abstract:
The system includes structure for supporting at least one tube within a pipe. The tube has one end disposed close to, or in contact with, a wall of the pipe. A sensor is disposed within the at least one tube to detect a pressure gradient or fluid movement within the tube. Such pressure gradient or fluid movement indicates a leak in the pipe adjacent to the tube location. In a preferred embodiment, the structure is a ring sized to fit within the pipe and the ring supports a plurality of tubes. In another aspect, the tube includes a restriction to prevent flow and pressure is measured on each side of the restriction.
Abstract:
Leak detection system. The system locates leaks in a pipeline that includes RFID tags deployed at known locations along the pipeline. A pair of bodies tethered to one another a fixed distance apart travels along the pipeline. Each of the bodies is supported for movement substantially along the centerline of the pipeline and each body includes a sensor responsive to sound or pressure variations generated by a leak. Signals are correlated to identify the existence of a leak. Each body also includes an RFID reader for reading the RFID tags in the pipeline. At least one of the bodies includes a power supply and/or electronics that are adapted to correlate signals from sensor on each body to determine the location of a leak within the pipeline.
Abstract:
The system includes structure for supporting at least one tube within a pipe. The tube has one end disposed close to, or in contact with, a wall of the pipe. A sensor is disposed within the at least one tube to detect a pressure gradient or fluid movement within the tube. Such pressure gradient or fluid movement indicates a leak in the pipe adjacent to the tube location. In a preferred embodiment, the structure is a ring sized to fit within the pipe and the ring supports a plurality of tubes. In another aspect, the tube includes a restriction to prevent flow and pressure is measured on each side of the restriction.
Abstract:
The leak detection system for pipes and couplings is a system for generating an alert signal when a liquid leak from the pipe joint or coupling is detected. The leak detection system includes a transmitter mounted adjacent a pipe joint formed between a first pipe and a fitting of a second pipe. A pair of contacts have first ends electrically connected to the transmitter and second ends extending into an annular recess formed in the pipe joint. The second ends have a gap formed between each other. When an electrically conductive liquid leaks from the pipe joint, the liquid fills the gap between the contacts, closing a transmitting circuit, activating the transmitter to transmit an alert signal.
Abstract:
Integrated polymeric-ceramic membrane-based oxy-fuel combustor. The combustor includes a polymer membrane structure for receiving air at an input and for delivering oxygen-enriched air at an outlet. An oxygen transport reactor including a ceramic ion transport membrane receives the oxygen-enriched air from the polymer membrane structure to generate oxygen for combustion with a fuel introduced into the oxygen transport reactor.
Abstract:
Leak detection system. A rigid body is resiliently supported within an outer cage. Means are provided for detecting displacement of the rigid body with respect to the outer cage, the displacement indicating a leak when the rigid body is moved by a suction force generated by a local pressure gradient resulting from a leak within a pipe network. The invention allows a leak to be determined around the circumference of a pipe.
Abstract:
The moving carbon nanotube heat sink includes a heat transfer belt comprised of highly thermally efficient carbon nanotubes. Laterally disposed cooling fins extend away from a top surface of the belt. The belt is slidingly disposed over a C-shaped channel made of metal or other suitable material that is mechanically and/or chemically connected to a top surface of an electronic chip. Belt movement may be powered and guided by a plurality of rollers. The cooling occurs primarily as a result of conduction and convection heat transfer modes.
Abstract:
A hot beverage cup and sleeve bring together two modes of heat transfer, conduction and radiation. The sleeve has an inner face with a plurality of high reflectivity surfaces for radiating heat back to the cup. The sleeve also has a plurality of insulating members for containing insulating air. Each of the insulating members is positioned to space the high reflectivity surfaces away from the cup. A low emissivity film can be adhered to the cup without touching the insulating members. The film can also be attached to the sleeve facing but spaced from the high reflectivity surfaces. This cup and sleeve arrangements minimize thermal contact and reduce heat transfer. Thus, the hot beverage cup and sleeve protect a person's hand as well as extend the time of keeping the beverage hot.
Abstract:
Integrated polymeric-ceramic membrane-based oxy-fuel combustor. The combustor includes a polymer membrane structure for receiving air at an input and for delivering oxygen-enriched air at an outlet. An oxygen transport reactor including a ceramic ion transport membrane receives the oxygen-enriched air from the polymer membrane structure to generate oxygen for combustion with a fuel introduced into the oxygen transport reactor.
Abstract:
The carbon-free fire tube boiler is a boiler for heating water by combustion of hydrocarbon fuels with oxygen. The boiler includes a housing defining first and second heat transfer stages. At least one oxygen transport reactor is received within the first heat transfer stage. The oxygen transport reactor includes an outer wall and an inner cylindrical ion transport membrane. The membrane receives pressurized air and separates gaseous oxygen therefrom, transporting the oxygen into an annular region between the membrane and the outer wall. The gaseous hydrocarbon fuel is delivered into the annular region for combustion, producing gaseous carbon dioxide and water vapor. A water reservoir is defined within the first and second stages, with the at least one oxygen transport reactor and at least one transfer tube passing therethrough. The carbon dioxide and the water vapor are delivered through the at least one transfer tube for heating water contained therein.