Abstract:
Certain embodiments of the invention relate to a surgical procedure resulting in the fusion of transverse processes. The disclosure herein presents novel approaches for accessing transverse processes of the spine, novel methods for the delivery of fusion material for the fusion of said transverse processes, and novel tools to facilitate the procedure. Certain embodiments of the invention include a graft delivery assembly, which has a delivery shaft, delivery sheath, and at least one curved rod. Bony material is position with a graft delivery assembly, in which retraction of the delivery shaft or sheath places the bone fusion material to the fusion site. The graft delivery assembly further includes features to decorticate and prepare the bone surface for fusion.
Abstract:
Certain embodiments of the invention relate to a surgical procedure resulting in the fusion of transverse processes. The disclosure herein presents novel approaches for accessing transverse processes of the spine, novel methods for the delivery of fusion material for the fusion of said transverse processes, and novel tools to facilitate the procedure. Certain embodiments of the invention include a graft delivery assembly, which has a delivery shaft, delivery sheath, and at least one curved rod. Bony material is position with a graft delivery assembly, in which retraction of the delivery shaft or sheath places the bone fusion material to the fusion site. The graft delivery assembly further includes features to decorticate and prepare the bone surface for fusion.
Abstract:
A system is utilized, which comprises a cross connector for use in spinal fixation, further comprising multiple connection features configured to accommodate for direct attachment to multiple rods. Teachings are directed to a device that not only provides increased construct stiffness in flexion, extension and lateral bending, but also in torsion. The system adds stiffness in standard constructs. Joining multiple adjacent constructs with varying rod sizes for load distribution are also benefits of the system.
Abstract:
The present disclosure presents novel methods, procedures associated steps, and apparatuses to accomplish SI joint fusion in a minimally invasive manner. The preferred embodiment of the invention incorporates improved methods, procedures and apparatuses to facilitate a SI joint fusion providing a generally safer, more minimally invasive SI joint stabilization. In the method associated with the preferred embodiment of the invention, in one aspect, a path or a plurality of paths through an ilium to the sacrum is established, wherein a stabilizer device allows the securement of the sacrum to the ilium. In another aspect, a path or a plurality of paths to the SI joint is established, where bone fusion material allows fusion of the articular surface of the ilium and the articular surface of the sacrum of an SI joint.
Abstract:
Disclosed are surgical implants for providing therapy to a treatment site, tool sets and methods for minimally invasively accessing and deploying the implants within the spine. The treatment site may be a vertebral body, disc, and/or motion segments in the lumbar and sacral regions of the spine.
Abstract:
Methods for implantation across one or more adjacent bones to allow for control of the distance between bone anchors. Control of distance between bone anchors may be provided by one inter-anchor element pushing the pair of bone anchors apart and a second inter-anchor element pulling the pair of bone anchors together. Control of distance between bone anchors may be provided through use of dissimilar thread pitch. Compression of the space between bone anchors through controlled movement of a pair of anchored bone anchors towards one another.
Abstract:
The preferred embodiment of the present invention is generally described as a lordotic pre-sacral rod implant, or implant construct, for use in association with spinal fusion procedures. In an embodiment, the lordotic pre-sacral rod implant incorporates a washer configured to press against the endplate of the L5 vertebral body and thereby force the vertebral bodies of the lumbosacral junction into a lordotic orientation.
Abstract:
An expanding surgical dilator for access to the spine and associated method of use is presented. The method has several steps associated with utilizing the expanding surgical dilator to facilitate the placement of objects, optionally implants and/or instrumentation, through the expanding surgical dilator that exceed the expanding surgical dilator's diameter in its compressed form. The expanding surgical dilator comprises an elastic sheath that can stretch and accommodate and link blades forming the rigid bodies of the sheath.
Abstract:
The preferred embodiment of the present invention is generally described as a lordotic pre-sacral rod implant, or implant construct, for use in association with spinal fusion procedures. In an embodiment, the lordotic pre-sacral rod implant incorporates a washer configured to press against the endplate of the L5 vertebral body and thereby force the vertebral bodies of the lumbosacral junction into a lordotic orientation.
Abstract:
Certain embodiments of the invention relate to a surgical procedure resulting in the fusion of transverse processes. The disclosure herein presents novel approaches for accessing transverse processes of the spine, novel methods for the delivery of fusion material for the fusion of said transverse processes, and novel tools to facilitate the procedure. Certain embodiments of the invention include a graft delivery assembly, which has a delivery shaft, delivery sheath, and at least one curved rod. Bony material is position with a graft delivery assembly, in which retraction of the delivery shaft or sheath places the bone fusion material to the fusion site. The graft delivery assembly further includes features to decorticate and prepare the bone surface for fusion.