Abstract:
The present invention belongs to the technical field of semiconductor memory devices and specifically relates to a self-aligned vertical nonvolatile semiconductor memory device, Including: a semiconductor substrate, a drain region of a first doping type, two source regions of a second doping type, a stacked gate used to capture electrons; wherein the drain region, the two source regions and the stacked gate form two tunneling field effect transistors (TFETs) sharing one gate and one drain, the drain region current of each of the TFET is affected by the quantity and distribution of the charges in the stacked gate used to capture electrons, the drain is buried in the semiconductor substrate, the source regions above the drain region are separated from the drain through a channel and separated form each other through a region of the first doping type. The semiconductor memory device of the present invention features small unit area and simple manufacturing process. The memory chip using the present invention is of low manufacturing cost and high storage density.
Abstract:
The present invention belongs to the technical field of microelectronic devices, specifically relates to a semiconductor memory structure and its manufacturing method thereof. The semiconductor memory structure which carries out erasing, writing and reading operation on the phase change memory or the resistance change memory through a tunneling field-effect transistor is formed, for one hand, the high current passed through the tunneling field-effect transistor when the p-n junction the biased positively, meeting the high current requirements for erasing of and writing of the phase change memory and the resistance change memory, and on the other hand, Vertical structure of the field-effect transistor can greatly improve the density of memory devices arrays. The present invention also discloses a method, which is very suitable for the memory chips, for the manufacturing of the semiconductor memory structure using self-aligned process.
Abstract:
This invention belongs to semiconductor device manufacturing field and discloses a method for manufacturing a gate-control diode semiconductor storage device. When the floating gate voltage is relatively high, the channel under the floating gate is of n type and a simple gate-control pn junction structure is configured; by controlling effective n-type concentration of the ZnO film through back-gate control, inverting the n-type ZnO into p-type through a floating gate and using NiO as a p-type semiconductor, an n-p-n-p doping structure is formed while the quantity of charges in the floating gate determines the device threshold voltage, thus realizing memory functions. This invention features capacity of manufacturing gate-control diode memory devices able to reduce the chip power consumption through advantages of high driving current and small sub-threshold swing. This invention is applicable to semiconductor devices manufacturing based on flexible substrate and flat panel displays and floating gate memories, etc.
Abstract:
This invention belongs to semiconductor device manufacturing field and discloses a method for manufacturing a gate-control diode semiconductor device. When the gate voltage is relatively high, the channel under the gate has an n type and the device has a simple gate-control pn junction structure; by way of controlling the effective n-type concentration of the ZnO film through back-gate control, inverting the n-type ZnO into p-type through the gate and using NiO as a p-type semiconductor, an n-p-n-p doping structure is formed. The present invention features capacity of manufacturing gate-control diode devices able to reduce the chip power consumption through the advantages of a high driving current and small sub-threshold swing, is especially applicable to the manufacturing of reading & writing devices having flat panel displays & phase change memory, and semiconductor devices based on flexible substrates.
Abstract:
The present invention belongs to the technical field of semiconductor device manufacturing and specifically relates to a method for manufacturing a tunneling field effect transistor with a U-shaped channel. The U-shaped channel can effectively extend the transistor channel length, restrain the generation of leakage current in the transistor, and decrease the chip power consumption. The method for manufacturing a tunneling field effect transistor with a U-shaped channel put forward in the present invention is capable of realizing an extremely narrow U-shaped channel, overcoming the alignment deviation introduced by photoetching, and improving the chip integration degree.
Abstract:
The present invention belongs to the technical field of low temperature atomic layer deposition technology, and specifically relates to a method for manufacturing a flexible transparent 1T1R storage unit. In the present invention, a fully transparent 1T1R storage unit is developed on a flexible substrate through a completely low-temperature process, including an oxide layer dielectric, a transparent electrode and a transparent substrate which are deposited together through a low-temperature process, thus realizing a fully transparent device capable of achieving the functions of nontransparent devices. The present invention can be applied to the manufacturing of flexible low-temperature storage units in the future, as well as changing the packaging and existing modes of devices, which will make foldable and bendable portable storage units possible.
Abstract:
This invention belongs to the technical field of memories and specifically relates to a resistive random access memory structure with an electric-field strengthened layer and a manufacturing method thereof. The resistive random access memory in the present invention can include a top electrode, a bottom electrode and a composite layer which is placed between the top electrode and the bottom electrode and have a first resistive switching layer and a second resistive switching and electric-field strengthened layer; the second resistive switching and electric-field strengthened layer cab be adjacent to the first resistive switching layer and have a dielectric constant lower than that of the first resistive switching layer. The electric-field distribution in the RRAM unit is adjustable.
Abstract:
The present invention discloses an inductive element formed by through silicon via interconnections. The inductive element formed by means of the special through silicon via interconnection by using through silicon via technology features advantages such as high inductance and density. Moreover, the through silicon via interconnection integrated process forming the inductive element is compatible with the ordinary through silicon interconnection integrated process without any other steps, thus making the process simple and steady. The inductive element using the present invention is applicable to the through silicon via package manufacturing of various chips, especially the package manufacturing of power control chips and radio-frequency chips.
Abstract:
The present invention belongs to the technical field of integrated semiconductor circuits, and relates to a method for manufacturing a copper-diffusion barrier layer. In the present invention, a proper reaction precursor has been selected and the atomic layer deposition (ALD) technology has been adopted to develop Co or Ru on a TaN layer to obtain a diffusion barrier layer used in the interconnection for process nodes no more than 32 nm, which overcomes the insufficiency of the PVD deposition Ta/TaN double-layer structure as the copper-diffusion barrier layer in step coverage and conformity, and also effectively solves various serious problems in the Cu/low-k dual damascene process, such as the generation of voids in grooves and through-holes, and electromigration stability.
Abstract:
The present invention discloses an inductive element formed by through silicon via interconnections. The inductive element formed by means of the special through silicon via interconnection by using through silicon via technology features advantages such as high inductance and density. Moreover, the through silicon via interconnection integrated process forming the inductive element is compatible with the ordinary through silicon interconnection integrated process without any other steps, thus making the process simple and steady. The inductive element using the present invention is applicable to the through silicon via package manufacturing of various chips, especially the package manufacturing of power control chips and radio-frequency chips.