摘要:
A method is provided of forming a superconductor device interconnect structure. The method comprises forming a first dielectric layer overlying a substrate and forming a superconducting interconnect element in the first dielectric layer. The superconducting interconnect element includes a top surface aligned with a top surface of the first dielectric layer to form a first interconnect layer. The superconductor device interconnect structure is moved into a dielectric deposition chamber. The method further comprises performing a cleaning process on a top surface of the first interconnect layer in the dielectric deposition chamber to remove oxidization from a top surface of the first interconnect layer, and depositing a second dielectric layer over the first interconnect layer in the dielectric deposition chamber.
摘要:
The invention relates to an energy efficient, environmentally favourable process for preparing water and solvent-free rubber ionomers and/or polymer nanocomposites comprising said rubber ionomers.
摘要:
A device for scattering confetti. The device may include a body, a container, coupled to the body, and having confetti disposed therein, and at least one retaining structure for maintaining the device in a hand of a person. A portion of the body may be disposed in the palm of the hand, while one or both of the body and the container may further include at least one component for releasing confetti from the container.
摘要:
The present invention relates to a reactor (10) and a process for continuous polymerization, where the reactor (10) has an essentially tubular reactor housing (16). The reactor housing (16) has a drive (38) which runs along the geometric central axis (12) in the flow direction (22) and is configured as a central shaft. A rotatably arranged scraper or wiper (36) is provided within the reactor housing (16); the scraper or wiper (36) has at least one scraper or wiper blade (42) to run along an interior side (44) of the reactor housing (16). The rotational movement of the scraper or wiper (36) results in radial mixing of a stream within the reactor housing (16) which dominates gravity effects and, by virtue of shaping of the scrapers or wipers, optionally makes plug flow or a loop flow or backflow within the reactor (10) or else via an additional external pumped circulation system (23) possible. This allows the reaction conditions in the axial direction of the reactor housing (16) to be predicted and individually suitable reaction conditions to be set and controlled along the reactor housing, so that, in particular, a desired molecular weight distribution can be set.
摘要:
The invention relates to an energy efficient, environmentally favourable process for preparing water and solvent-free rubber ionomers and/or polymer nanocomposites comprising said rubber ionomers.
摘要:
An in-canal hearing device includes a receiver, battery, and microphone assembly with a housing. The housing has an air and sound opening which is covered with a structure to inhibit the entry of cerumen and moisture. The structure may be in the form of an end cap having passages with walls which are both hydrophobic and oleophobic to prevent the entry of water, cerumen and other liquids. The structure may also include a flexible tube or a rigid perforated shell surrounding the passages that inhibit the deposition of solid cerumen and other debris onto the passages.
摘要:
The present invention relates to the industrial purification of vinylene carbonate (VC).It was found that it is advantageous to subject the VC to be purified, before the purifying distillation, to a simple thermal treatment with organic compounds which have amidic nitrogen-hydrogen bonds.
摘要:
A recycling mechanism is provided for use with a compact dedusting apparatus to clean the contaminate-laden air discharged from the dedusting apparatus for subsequent re-use by the dedusting apparatus. The recycling mechanism provides a closed loop air containment system that retains the air within the apparatus without providing discharge to the atmosphere. The recycling mechanism includes a cyclonic separator that removes most of the dust and contaminates from the air discharged from the deduster. The air discharged from the cyclonic separator is passed to an inline high efficiency synthetic cartridge filter for final cleaning before being passed back into the fan that drives cleansing air through the deduster. The contaminant material removed by the cyclonic separator is collected by an air tight dust collection container installed at the cyclone outlet for subsequent removal from the system.
摘要:
To generate information representing a volume, co-arrays or synthetic transmit aperture process is performed in one dimension and beamforming is performed in another dimension. For example, a transmit aperture focuses in azimuth, but is unfocused or divergent in elevation. A multi-dimensional array receives reflected echoes. The echoes are beamformed for sub-arrays for focus in azimuth. The resulting partial beamformed information is provided to an imaging system from the probe housing for completion of beamforming at least in elevation.
摘要:
Product is conveyed as a continuous stream by a meter conveyor (12) unto a transfer plate (32) and a transfer device (42). The transfer device (42) is movable between a retracted position and an extended position extending over a sweep conveyor (22). In a preferred form, the transfer device (42) is in the form of a thin piece of flexible material and is moved in the conveying direction from the retracted position to the extended position by engaging with the sweep conveyor (22) and is moved to the retracted position by being wrapped around a rotated roller (46). Product is transferred from the transfer device (42) to the sweep conveyor (22) as the transfer device (42) moves from the extended position to the retracted position and is engaged by a metering bar (52ba) which controls the product acceleration on the sweep conveyor (22) to match the meter conveyor (12) until the product group leaves the transfer device (42). With nested product, the leading edge of the transfer device (42) is scalloped to represent the product bottom leading edge.