摘要:
In a processor, a method for speculative permission acquisition for access to a shared memory. The method includes receiving a store from a processor core to modify a shared cache line, and in response to receiving the store, marking the cache line as speculative. The cache line is then modified in accordance with the store. Upon receiving a modification permission, the modified cache line is subsequently committed.
摘要:
Method and system for supporting speculative modification in a data cache are provided and described. A data cache comprises a plurality of cache lines. Each cache line includes a state indicator for indicating anyone of a plurality of states, wherein the plurality of states includes a speculative state to enable keeping track of speculative modification to data in the respective cache line. The speculative state enables a speculative modification to the data in the respective cache line to be made permanent in response to a first operation performed upon reaching a particular instruction boundary during speculative execution of instructions. Further, the speculative state enables the speculative modification to the data in the respective cache line to be undone in response to a second operation performed upon failing to reach the particular instruction boundary during speculative execution of instructions.
摘要:
Method and system for conservatively managing store capacity available to a processor issuing stores are provided and described. In particular, a counter mechanism is utilized, whereas the counter mechanism is incremented or decremented based on the occurrence of particular events.
摘要:
Method and system for supporting speculative modification in a data cache are provided and described. A data cache comprises a plurality of cache lines. Each cache line includes a state indicator for indicating anyone of a plurality of states, wherein the plurality of states includes a speculative state to enable keeping track of speculative modification to data in the respective cache line. The speculative state enables a speculative modification to the data in the respective cache line to be made permanent in response to a first operation performed upon reaching a particular instruction boundary during speculative execution of instructions. Further, the speculative state enables the speculative modification to the data in the respective cache line to be undone in response to a second operation performed upon failing to reach the particular instruction boundary during speculative execution of instructions.
摘要:
Instructions asserted in the instruction pipeline (3) of the microprocessor are accompanied by control information, comprising a group of bits, asserted within a control information pipeline (15) of the processor. The control information pipeline is synchronized to the instruction pipeline so that the control information for an instruction progresses in synchronism with the instruction. The control information may identify, directly or indirectly, the type of operation called for by the instruction and, if the operation is to be performed in parts, indicate the part to be performed. Means are included in the processor, such as a number of functional execution units (7), to interpret that control information and take appropriate action. Applied in a VLIW processor to an atom operation that requires multiple cycles to complete, in which the first part of the operation is permitted to complete and the atom then reasserted, the control information identifies the second assertion of the atom as the second part of a multi-cycle operation.
摘要:
In a processor, a method for speculative permission acquisition for access to a shared memory. The method includes receiving a store from a processor core to modify a shared cache line, and in response to receiving the store, marking the cache line as speculative. The cache line is then modified in accordance with the store. Upon receiving a modification permission, the modified cache line is subsequently committed.
摘要:
Method and system for supporting speculative modification in a data cache are provided and described. In one embodiment, a speculative cache buffer includes a plurality of cache lines and a plurality of state indicators. At least one of the cache lines is operable to receive an evicted cache line from a cache. The at least one of the cache lines is operable to return the evicted cache line to the cache if the cache requests the evicted cache line. Further, the plurality of state indicators is operable to indicate a state of a corresponding cache line of the cache lines.
摘要:
Instructions asserted in a microprocessors instruction pipeline (3) are accompanied by control information, comprising a group of bits, asserted within a control information pipeline (5) that is synchronized to the instruction pipeline. At the execution stage, the control information is interpreted and appropriate action taken. The control information may indicate that the instruction has been reasserted (asserted again following an initial assertion) and may also indicate the number of times that the instruction has been consecutively asserted in the instruction pipeline. Applied to unaligned memory operations, in which a memory atom is asserted twice, the control information indicates which part of the unaligned data is to be fetched each time the atom is executed.
摘要:
A method and apparatus for storing and retrieving data in an N-way set associative cache with N data array banks is disclosed. On a cache fill corresponding to a particular way, a portion of each cache line (called a chunk) is placed in each data array bank. On a processor load seeking a requested chunk, a candidate chunk is retrieved from each data array bank and the requested chunk is selected from among the candidates.
摘要:
Embodiments related to re-dispatching an instruction selected for re-execution from a buffer upon a microprocessor re-entering a particular execution location after runahead are provided. In one example, a microprocessor is provided. The example microprocessor includes fetch logic, one or more execution mechanisms for executing a retrieved instruction provided by the fetch logic, and scheduler logic for scheduling the retrieved instruction for execution. The example scheduler logic includes a buffer for storing the retrieved instruction and one or more additional instructions, the scheduler logic being configured, upon the microprocessor re-entering at a particular execution location after runahead, to re-dispatch, from the buffer, an instruction that has been previously dispatched to one of the execution mechanisms.