Abstract:
Wearable injection guides and manufacture and use thereof are described, which include: a rigid needle-penetrable material having an inner surface and an outer surface, the inner surface having form-fitting contours substantially conforming to a topography of a body region of an individual and the outer surface including one or more fiducials indication of at least one treatment parameter.
Abstract:
Breast implants including sensor modules and related methods are described herein. Breast implants include those with: a shell configured to be substantially filled with a viscous material; at least one fluid-permeable cover, the cover completely enveloping the shell; a plurality of sensor modules attached to the shell, the sensor modules oriented to detect one or more analytes in a fluid between the shell and the cover, the sensor modules positioned at a distance from each other, wherein each of the plurality of sensor modules includes a unique identifier; and at least one power source operably attached to the plurality of sensor modules.
Abstract:
Breast implants including sensor modules and related methods are described herein. Breast implants include those with: a shell configured to be substantially filled with a viscous material; a plurality of sensor modules attached to the shell, the sensor modules oriented to detect one or more analytes in a fluid adjacent to the shell, the sensor modules positioned at a distance from each other, wherein each of the plurality of sensor modules includes a unique identifier; and at least one power source operably attached to the plurality of sensor modules.
Abstract:
Breast implants including sensor modules and related methods are described herein. Breast implants include those with: a shell configured to be substantially filled with a viscous material; and a plurality of sensor modules attached to the shell and positioned at a distance from each other, each of the plurality of sensor modules oriented to detect one or more analytes in a fluid adjacent to the shell, wherein each of the plurality of sensor modules includes a unique identifier and is configured to utilize energy transmitted from an external source.
Abstract:
Breast implants including sensor modules and related methods are described herein. Breast implants include those with: a shell configured to be substantially filled with a viscous material; a plurality of projections extending from an external surface of the shell, the projections forming a plurality of compartments adjacent to the external surface of the shell; at least one fluid-permeable cover attached to the projections, the cover completely enveloping the shell and the plurality of projections; and a plurality of sensor modules attached to the shell and positioned at a distance from each other, each of the sensor modules oriented to detect one or more analytes in a fluid within one of the plurality of compartments, wherein each of the plurality of sensor modules includes a unique identifier and is configured to utilize energy transmitted from an external source.
Abstract:
Breast implants including sensor modules and related methods are described herein. Breast implants include those with: a shell configured to be substantially filled with a viscous material; a plurality of projections extending from an external surface of the shell, the projections forming a plurality of compartments adjacent to the external surface of the shell; at least one fluid-permeable cover attached to the projections, the cover completely enveloping the shell and the plurality of projections; a plurality of sensor modules attached to the shell, each of the sensor modules oriented to detect one or more analytes in a fluid within one of the plurality of compartments, wherein each of the plurality of sensor modules includes a unique identifier; and at least one power source operably attached to the plurality of sensor modules.
Abstract:
Breast implants including sensor modules and related methods are described herein. Breast implants include those with: a shell configured to be substantially filled with a viscous material; at least one fluid-permeable cover, the cover completely enveloping the shell; and a plurality of sensor modules attached to the shell and positioned at a distance from each other, each of the sensor modules oriented to detect one or more analytes in a fluid between the shell and the cover, wherein each of the plurality of sensor modules includes a unique identifier and is configured to utilize energy transmitted from an external source.
Abstract:
A treatment planning system (106) for generating patient-specific treatment margins. The system (106) includes one or more processors (142). The processors (142) are programmed to receive a radiation treatment plan (RTP) for irradiating a target (122) over the course of one or more treatment fractions. The RTP including one or more treatment margins around the target (122) and a planned dose distribution for the target (122). The processors (142) are further programmed to receive motion data for at least one of the treatment fractions of the RTP from one or more target surrogates (124), calculate a motion-compensated dose distribution for the target (122) using the motion data and the planned dose distribution, compare the motion-compensated dose distribution to the planned dose distribution, and adjust the treatment margins based on dosimetric differences between the motion-compensated dose distribution and the planned dose distribution.
Abstract:
Breast implants including sensor modules and related methods are described herein. Breast implants include those with: a shell configured to be substantially filled with a viscous material; a plurality of sensor modules attached to the shell, the sensor modules oriented to detect one or more analytes in a fluid adjacent to the shell, the sensor modules positioned at a distance from each other, wherein each of the plurality of sensor modules includes a unique identifier; and at least one power source operably attached to the plurality of sensor modules.
Abstract:
Wearable injection guides and manufacture and use thereof are described, which include: a rigid material formed to substantially conform in shape to a topography of a body region of an individual, the rigid material substantially impenetrable to an injection needle, and the rigid material including one or more injection needle access regions arranged in a treatment pattern.