摘要:
Provided are a rolled Mg alloy material whose mechanical properties are locally different in a width direction, a Mg alloy structural member produced by plastically working the rolled Mg alloy material, and a method for producing the rolled Mg alloy material. The method for producing a rolled Mg alloy material includes rolling a Mg alloy material with a reduction roll. The reduction roll has three or more regions in the width direction. The temperature is controlled in each of the regions so that a difference between a maximum temperature and a minimum temperature exceeds 10° C. in the width direction of a surface of the reduction roll. The rolled state in the width direction is varied by varying a difference in temperature over the width direction of the reduction roll. As a result, it is possible to produce a rolled Mg alloy material whose mechanical properties are locally different in the width direction.
摘要:
The method of producing a magnesium alloy joined part has the following steps: a joining step of joining a reinforcing material made of metal to a plate material made of magnesium alloy without allowing an organic material to remain at the joined portion and a plastic-working step of performing plastic working on the plate material to which the reinforcing material is joined. A desirable means of joining the reinforcing material to the plate material can be to use an inorganic adhesive. Because the magnesium alloy joined part is formed by a structure in which the reinforcing material is joined to the plate material, in comparison with the case where the reinforcing material is formed by machining or the like, the magnesium alloy structural member can be obtained with high production efficiency.
摘要:
There is provided a magnesium alloy member having mechanical properties and corrosion resistance and a method of manufacturing the magnesium alloy member.A magnesium alloy member has a base material made of a magnesium alloy, and an anticorrosive film formed on the base material. The base material is a rolled magnesium alloy including 5 to 11% by mass of Al. By using a base material including a large amount of Al, a magnesium alloy member having excellent mechanical properties and high corrosion resistance can be produced. In addition, by using a rolled material, the number of surface defects at the time of casting is small, and the frequency of compensation processes such as undercoating and puttying can be reduced.
摘要:
A formed product of a magnesium alloy having excellent impact resistance and a magnesium alloy sheet suitable as a material for the formed product are provided. The formed product is produced by press-forming a magnesium alloy sheet having an Al content of 7% by mass to 12% by mass and has a flat portion that is not subjected to drawing deformation. In a metal texture in a cross section of the flat portion in the thickness direction, the number of coarse intermetallic compound (Mg17Al12) particles having a particle size of 5 μm or more present in a surface area region extending from a surface of the flat portion to a position one-third of the thickness from the surface in the thickness direction is five or less. The formed product has a texture in which the number of coarse precipitations d1 is small and in which fine precipitations d0 are dispersed. The formed product is less likely to be dented even when impacted because of dispersion strengthening owing to the fine precipitations and solid-solution strengthening owing to Al that sufficiently forms a solid solution.
摘要:
The invention offers a magnesium alloy structural member having a high metallic texture. The magnesium alloy structural member is provided with a base material made of magnesium alloy and a covering layer formed on the base material. The base material is provided, in at least one part of its surface, with a surface-processed portion that is subjected to a fine asperity-forming processing so as to obtain a metallic texture. The covering layer is transparent. The structural member can effectively increase the metallic texture by having the surface-processed portion. Because the structural member is provided with the covering layer, it has excellent corrosion resistance. Because the covering layer is transparent, the metallic texture in the surface-processed portion is readily sensed. The asperity-forming processing is performed through hairline finish, diamond cut finish, and the like.
摘要:
The invention offers a magnesium alloy sheet having excellent warm plastic formability, a production method thereof, and a formed body produced by performing warm plastic forming on this sheet. The magnesium alloy sheet is produced by giving a predetermined strain to a rolled sheet RS that is not subjected to a heat treatment aiming at recrystallization. The sheet is not subjected to the foregoing heat treatment even after the giving of a strain. The strain is given through the process described below. A rolled sheet RS is heated in a heating furnace 10. The heated rolled sheet RS is passed between rollers 21 to give bending to the rolled sheet RS. The giving of a strain is performed such that the strain-given sheet has a half peak width of 0.20 deg or more and 0.59 deg or less in a (0004) diffraction peak in monochromatic X-ray diffraction. The alloy sheet exhibits high plastic deformability by forming continuous recrystallization during warm plastic forming through the use of the remaining strain.
摘要:
The present invention provides a producing method of a magnesium-based alloy wrought product capable of producing a plastic processing wrought product made of magnesium-based alloy with excellent productivity. A drawn material made of magnesium-based alloy obtained by drawing processing is subjected to plastic processing into a wrought product at processing temperature of lower than 250° C. Since the alloy structure is finely divided by the drawing processing, plastic workability can be enhanced in the plastic processing even if the processing temperature is lower than 250° C. Examples of the plastic processing are forging processing, swaging processing and bending processing.
摘要:
A steel wire of pearlite structure containing 0.8-1.0 mass % of C and 0.8-1.5 mass % of Si is disclosed. In the cross section of the steel wire the average hardness in a region up to 100 &mgr;m from the surface thereof is at least 50 higher that that in a deeper region based on micro-Vickers hardness. The steel wire is manufactured by working a wire rod having the abovementioned chemical composition through shaving, patenting and drawing processes, then strain-relief annealing the resultant wire, and thereafter subjecting the thus annealed wire to a short peening process. The steel wire can be produced through a drawing process without applying a quenching and tempering process, and are superior in heat resistance and fatigue strength.
摘要:
An evaporation material is used in manufacturing a VTR tape, a vertical magnetic recording thin film or the like. The evaporation material is a wire comprising a cobalt metal a cobalt--nickel alloy containing not more than 30 weight % of nickel, or a cobalt--chromium alloy containing not more than 30 weight % of chromium. This wire has a diameter of at least 1.0 mm and not more than 10 mm, a tensile strength of at least 400 MPa and not more than 1500 MPa, and an elongation and a reduction of area of at least 5%. The evaporation material has a prescribed crystal structure, with a face centered cubic lattice ratio of at least 0.1 and not more than 1. It is possible to obtain a wire having the above properties by heating the metal material to at least Tu.degree. C. and thereafter performing plastic working of reduction in area of at least 10% in a single pass at a temperature of at least Td.degree. C. and not more than (Tu+200).degree. C. Preferably, the cobalt metal or the cobalt--nickel alloy further contains 0.01 to 0.1 weight % of Mn, Cr, Mg, Zr or Ca. Preferably, the cobalt--chromium alloy further contains 0.01 to 0.1 weight % of Mn, Mg, Zr or Ca.
摘要:
Method for producing an elongated sintered article, characterized by the steps including filling powder material in a pipe, carrying out plastic deformation of the pipe filled with the powder material, and heating the pipe filled with the powder material to burn and/or sinter the powder material.The method of the present invention is advantageously applicable to production of wire or rod of ceramics, particularly so called new ceramics or fine ceramics, sintered alloys or their combination, which are difficult of shaping or moulding by conventional process such as wire-drawing, rolling or extrusion of powder material and are difficult of machining or processing after the powder material is sintered.