摘要:
A method forms a hydrocarbon-containing polymer film on a semiconductor substrate by a capacitively-coupled plasma CVD apparatus. The method includes the steps of: vaporizing a hydrocarbon-containing liquid monomer (CαHβXγ, wherein α and β are natural numbers of 5 or more; γ is an integer including zero; X is O, N or F) having a boiling point of about 20° C. to about 350° C.; introducing the vaporized gas into a CVD reaction chamber inside which a substrate is placed; and forming a hydrocarbon-containing polymer film on the substrate by plasma polymerization of the gas. The liquid monomer is unsaturated and has no benzene structure.
摘要:
A method for forming an insulation film having filling property on a semiconductor substrate by plasma reaction includes: vaporizing a silicon-containing hydrocarbon having a Si—O bond compound to provide a source gas; introducing the source gas and a carrier gas without an oxidizing gas into a reaction space for plasma CVD processing; and forming an insulation film constituted by Si, O, H, and optionally C or N on a substrate by plasma reaction using a combination of low-frequency RF power and high-frequency RF power in the reaction space. The plasma reaction is activated while controlling the flow of the reaction gas to lengthen a residence time, Rt, of the reaction gas in the reaction space.
摘要:
A plasma CVD apparatus for forming a thin film on a wafer having diameter Dw and thickness Tw, includes: a vacuum chamber; a shower plate; a top plate; a top mask portion for covering a top surface peripheral portion of the wafer; and a side mask portion for covering a side surface portion of the wafer. The side mask portion has an inner diameter of Dw+α, and the top mask portion is disposed at a clearance of Tw+β between a bottom surface of the top mask portion and a wafer-supporting surface of the top plate, wherein α is more than zero, and β is more than zero.
摘要:
A method for forming an insulation film having filling property on a semiconductor substrate by plasma reaction includes: vaporizing a silicon-containing hydrocarbon having a Si—O bond compound to provide a source gas; introducing the source gas and a carrier gas without an oxidizing gas into a reaction space for plasma CVD processing; and forming an insulation film constituted by Si, O, H, and optionally C or N on a substrate by plasma reaction using a combination of low-frequency RF power and high-frequency RF power in the reaction space. The plasma reaction is activated while controlling the flow of the reaction gas to lengthen a residence time, Rt, of the reaction gas in the reaction space.
摘要:
An insulation film is formed on a semiconductor substrate by a method including the steps of: (i) introducing a source gas comprising a compound composed of at least Si, C, and H into a chamber; (ii) introducing in pulses an oxidizing gas into the chamber, wherein the source gas and the oxidizing gas form a reaction gas; and (iii) forming an insulation film on a semiconductor substrate by plasma treatment of the reaction gas. The plasma treatment may be plasma CVD processing.
摘要:
A plasma CVD film-forming device forms a film on a semiconductor substrate in such as way that the film quality and film thickness of a thin film becomes uniform. The plasma CVD film-forming device to form a thin film on a semiconductor substrate includes a vacuum chamber, a showerhead positioned within the vacuum chamber, and a susceptor positioned substantially in parallel to and facing the showerhead within the vacuum chamber and on which susceptor the object to be processed is loaded and the central part of the showerhead and/or the susceptor constitutes a concave surface electrode.
摘要:
A CVD apparatus includes (i) a reaction chamber; (ii) a reaction gas inlet; (iii) a lower stage on which a semiconductor substrate is placed; (iv) an upper electrode for plasma excitation; (v) an intermediate electrode with plural pores through which the reaction gas passes, wherein a reaction space is formed between the upper electrode and the intermediate electrode; and (vi) a cooling plate disposed between the intermediate electrode and the lower stage, wherein a transition space is formed between the intermediate electrode and the cooling plate, and a plasma-free space is formed between the cooling plate and the lower stage.
摘要:
A method for forming a silicone polymer insulation film having low relative dielectric constant, high thermal stability and high humidity-resistance on a semiconductor substrate is applied to a plasma CVD apparatus. The first step is vaporizing a silicon-containing hydrocarbon compound expressed by the general formula Si&agr;O&bgr;CxHy (&agr;=3, &bgr;=3 or 4, x, and y are integers) and then introducing the vaporized compound to the reaction chamber of the plasma CVD apparatus. The next step is introducing additive gas into the reaction chamber. The residence time of the material gas is lengthened by reducing the total flow of the reaction gas, in such a way as to formed a silicone polymer film having a micropore porous structure with low relative dielectric constant.
摘要:
A method for forming a silicone polymer insulation film having a low dielectric constant, high thermal stability, high humidity-resistance, and high O2 plasma resistance on a semiconductor substrate is applied to a plasma CVD apparatus. The first step is introducing a silicon-containing hydrocarbon compound expressed by the general formula Si&agr;O&agr;−1(R)2&agr;−&bgr;+2(OCnH2n+1)&bgr; (&agr;, &bgr;, x, and y are integers) and then introducing the vaporized compound to the reaction chamber of the plasma CVD apparatus. The residence time of the material gas is lengthened by, for example, reducing the total flow of the reaction gas, in such a way as to form a silicone polymer film having a micropore porous structure with a low dielectric constant.
摘要:
A method for forming a silicone polymer insulation film having a low relative dielectric constant, high thermal stability and high humidity-resistance on a semiconductor substrate is applied to a plasma CVD apparatus. The first step is introducing a silicon-containing hydrocarbon compound expressed by the general formula Si&agr;O&bgr;CxHy (&agr;, &bgr;, x, and y are integers) to the reaction chamber of the plasma CVD apparatus. The silicon-containing hydrocarbon compound has at most two O—CnH2n+1 bonds and at least two hydrocarbon radicals bonded to the silicon. The residence time of the material gas is lengthened by, for example, reducing the total flow of the reaction gas, in such a way as to form a silicone polymer film having a micropore porous structure with a low relative dielectric constant.