摘要:
Temporal variations in backscatter from an ultrasound contrast agent located in the vascular system and induced by movement of the scatterers are used to visualise the presence of contrast agent by determining areas where correlation between successive ultrasound images is poor. This low level of correlation arising from intravascular contrast agent movement permits distinction between stationary bulk tissue and moving bulk tissue since movement of the latter solid tissue scatterers is correlated.
摘要:
A region of interest in the body is imaged using at least two different trigger intervals between images. Imaging automatically switches from one trigger interval to another in response to a user command, such as depressing a button. This automation avoids cumbersome manual changes of the trigger intervals. Perfusion is measured in a shorter time in this way, reducing the effects of breathing and transducer movement. Variation of the trigger intervals allows for a convenient determination of perfusion. For example, the trigger intervals are varied from one heart cycle to two heart cycles and then to other integer numbers of heart cycles.
摘要:
Temporal variations in backscatter from an ultrasound contrast agent located in the vascular system and induced by movement of the scatterers are used to visualize the presence of contrast agent by determining areas where correlation between successive ultrasound images is poor. This low level of correlation from intravascular contrast agent movement permits distinction between stationary bulk tissue and moving bulk tissue since movement of the latter solid tissue scatterers is correlated.