Abstract:
The invention relates to an in-plane-switching liquid crystal display for large pixel type scarcely producing defects and easily repairing defects. The in-plane-switching liquid crystal display 10 of the invention comprises a plurality of pads 34, and each pad connects to a pixel electrode 42. Besides, each pixel electrode 42 is surrounded by the common electrode 48. When the pixels enlarge, the defects scarcely occur. Even if the defect occurs, the defect can be easily repaired.
Abstract:
A liquid crystal display structure, includes a glass substrate and at least one or more chips mounted on the glass substrate including flexible printed circuit connect pins. A common wiring for connecting the at least one or more chips to a flexible printed circuit is formed on the glass substrate. The common wiring is connected to the flexible printed circuit connect pins of the at least one or more chips and to the flexible printed circuit at at least one position on the common wiring.
Abstract:
A liquid crystal display apparatus in normally-white mode in which gray scale display is obtained by providing different applied voltages corresponding to different gray scale levels, respectively, characterized in that in a curve showing the relationship between the applied voltage and light transmittance, the lowest applied voltage is set so as to be shifted in the direction of a monotonically decreasing region of the curve. The display simultaneously provides both good contrast ratios and good gradation at large viewing angles, and gray scale is not inverted.
Abstract:
An image display apparatus comprises a pixel electrode, a common electrode, and a switching element to control an electric potential supplied to the pixel electrode. In addition, an auxiliary electrode forms an auxiliary capacitance between a portion of the auxiliary electrode and a portion of the pixel electrode. The common electrode is adapted to be set at a first electric potential, and the auxiliary electrode is adapted to be set at a second, different electric potential.
Abstract:
To prevent the display image from becoming unclear due to an overlap of the afterimage of the display image of the preceding frame period with the display image of the current frame period so that the image quality of the motion picture may be improved, a display apparatus includes a display surface having a plurality of pixel lines and a write circuit adapted to sequentially write an image into each of said plurality of pixel lines. The write circuit writes, during a time period for writing said image into at least one pixel line, a black color into another pixel line. The another pixel line is separated from the at least one pixel line by a predetermined distance. The write circuit writes the black color into a plurality of pixel lines separated from the at least one gate line by the predetermined distance.
Abstract:
A liquid crystal display, and its manufacturing process, are provided in which antistatic measures are taken in the manufacturing process to prevent the occurrence of static failure before the formation during that process of the short ring. On a glass substrate 2, gate lines 46 are formed. The gate lines 46 are disconnected to form a discharge gap 50 with projections 52 and 54 on both sides of the gap 50. The discharge projections 52 and 54 are positioned substantially at the center of the edges of the disconnected portion of the gate lines 46. A gate insulation film 56 is formed on the gate lines 46 and in the discharge gap 50. Two through holes 58 are made in the gate insulation film 56 in the vicinity of the discharge projections 52 and 54 of each gate line 46. A metal wiring layer 48 is formed on the gate insulation film 56 so as to fill in the through holes 58 where the discharge gap is no longer necessary.
Abstract:
An image display device, particularly an IPS mode LCD, includes a light source, an array substrate including a display region and a peripheral region around the display region, a color filter substrate including a plurality of color filters having different transmissivities, a liquid crystal layer including a plurality of liquid crystal molecules, and an alignment film for aligning the liquid crystal molecules. Characteristically, a light transmittance per unit area in the peripheral region is equivalent to or less than a light transmittance per unit area in the display region.
Abstract:
A liquid crystal display device includes a planarizing layer; a common electrode on the planarizing layer; a pixel electrode on the planarizing layer; a liquid crystal layer; a data line; and a color filter layer. An electric field is generated between the pixel electrode and the common electrode. The liquid crystal layer covers the common electrode and the pixel electrode. The color filter layer includes a first filter and a second filter in contact with the first filter. The first filter transmits a light, of a first wavelength, that passes through the pixel electrode. The second filter transmits a light, of a second wavelength, that passes through the other pixel electrode next to the pixel electrode.
Abstract:
An image display device, particularly an IPS mode LCD, includes a light source, an array substrate including a display region and a peripheral region around the display region, a color filter substrate including a plurality of color filters having different transmissivities, a liquid crystal layer including a plurality of liquid crystal molecules, and an alignment film for aligning the liquid crystal molecules. Characteristically, a light transmittance per unit area in the peripheral region is equivalent to or less than a light transmittance per unit area in the display region.
Abstract:
The invention relates to an in-plane-switching liquid crystal display for large pixel type scarcely producing defects and easily repairing defects. The in-plane-switching liquid crystal display 10 of the invention comprises a plurality of pads 34, and each pad connects to a pixel electrode 42. Besides, each pixel electrode 42 is surrounded by the common electrode 48. When the pixels enlarge, the defects scarcely occur. Even if the defect occurs, the defect can be easily repaired.