摘要:
In one embodiment, a Light Emitting Diode (LED) driving device for driving a plurality of LEDs has a switching matrix utilizing a plurality of one of a turn off thyristors or turn off triacs coupled to the plurality of LEDs. A controller is coupled to the switching matrix responsive to a voltage of a rectified AC halfwave, wherein combinations of the plurality of LEDs are altered to ensure a maximum operating voltage of the plurality of LEDs is not exceeded. A current limiting device is coupled to the combinations of the plurality of LED to regulate current.In a second embodiment an offline charge pump utilizes a switching matrix to recombine capacitors in accordance with the voltage on the AC half wave and then in accordance with a desired output voltage to feed a load, such that said recombinations occur at a frequency much higher than the frequency of the AC rectified half wave such that charge is “pumped” from the input at one voltage to the output at another voltage through the AC halfwave while providing a constant output voltage to the load,.
摘要:
In one embodiment, a Light Emitting Diode (LED) driving device for driving a plurality of LEDs has a switching matrix utilizing a plurality of one of a turn off thyristors or turn off triacs coupled to the plurality of LEDs. A controller is coupled to the switching matrix responsive to a voltage of a rectified AC halfwave, wherein combinations of the plurality of LEDs are altered to ensure a maximum operating voltage of the plurality of LEDs is not exceeded. A current limiting device is coupled to the combinations of the plurality of LED to regulate current.In a second embodiment an offline charge pump utilizes a switching matrix to recombine capacitors in accordance with the voltage on the AC half wave and then in accordance with a desired output voltage to feed a load, such that said recombinations occur at a frequency much higher than the frequency of the AC rectified half wave such that charge is “pumped” from the input at one voltage to the output at another voltage through the AC halfwave while providing a constant output voltage to the load.
摘要:
In one embodiment, a Light Emitting Diode (LED) driving device for driving a plurality of LEDs has a switching matrix utilizing a plurality of one of a turn off thyristors or turn off triacs coupled to the plurality of LEDs. A controller is coupled to the switching matrix responsive to a voltage of a rectified AC halfwave, wherein combinations of the plurality of LEDs are altered to ensure a maximum operating voltage of the plurality of LEDs is not exceeded. A current limiting device is coupled to the combinations of the plurality of LED to regulate current. In a second embodiment an offline charge pump utilizes a switching matrix to recombine capacitors in accordance with the voltage on the AC half wave and then in, accordance with a desired output voltage to feed a load, such that said recombinations occur at a frequency much higher than the frequency of the AC rectified half wave such that charge is “pumped” from the input at one voltage to the output at another voltage through the AC halfwave while, providing a constant output voltage to the load.
摘要:
In one embodiment, a Light Emitting Diode (LED) driving device for driving a plurality of LEDs has a switching matrix utilizing a plurality of one of a turn off thyristors or turn off triacs coupled to the plurality of LEDs. A controller is coupled to the switching matrix responsive to a voltage of a rectified AC halfwave, wherein combinations of the plurality of LEDs are altered to ensure a maximum operating voltage of the plurality of LEDs is not exceeded. A current limiting device is coupled to the combinations of the plurality of LED to regulate current. In a second embodiment an offline charge pump utilizes a switching matrix to recombine capacitors in accordance with the voltage on the AC half wave and then in accordance with a desired output voltage to feed a load, such that said recombinations occur at a frequency much higher than the frequency of the AC rectified half wave such that charge is “pumped” from the input at one voltage to the output at another voltage through the AC halfwave while providing a constant output voltage to the load.
摘要:
In one embodiment, a Light Emitting Diode (LED) driving device for driving a plurality of LEDs has a switching matrix utilizing a plurality of one of a turn off thyristors or turn off triacs coupled to the plurality of LEDs. A controller is coupled to the switching matrix responsive to a voltage of a rectified AC halfwave, wherein combinations of the plurality of LEDs are altered to ensure a maximum operating voltage of the plurality of LEDs is not exceeded. A current limiting device is coupled to the combinations of the plurality of LED to regulate current.In a second embodiment an offline charge pump utilizes a switching matrix to recombine capacitors in accordance with the voltage on the AC half wave and then in accordance with a desired output voltage to feed a load, such that said recombinations occur at a frequency much higher than the frequency of the AC rectified half wave such that charge is “pumped” from the input at one voltage to the output at another voltage through the AC halfwave while providing a constant output voltage to the load.
摘要:
In one embodiment, a Light Emitting Diode (LED) driving device for driving a plurality of LEDs has a switching matrix utilizing a plurality of one of a turn off thyristors or turn off triacs coupled to the plurality of LEDs. A controller is coupled to the switching matrix responsive to a voltage of a rectified AC halfwave, wherein combinations of the plurality of LEDs are altered to ensure a maximum operating voltage of the plurality of LEDs is not exceeded. A current limiting device is coupled to the combinations of the plurality of LED to regulate current.In a second embodiment an offline charge pump utilizes a switching matrix to recombine capacitors in accordance with the voltage on the AC half wave and then in accordance with a desired output voltage to feed a load, such that said recombinations occur at a frequency much higher than the frequency of the AC rectified half wave such that charge is “pumped” from the input at one voltage to the output at another voltage through the AC halfwave while providing a constant output voltage to the load.
摘要:
In one embodiment, a Light Emitting Diode (LED) driving device for driving a plurality of LEDs has a switching matrix utilizing a plurality of one of a turn off thyristors or turn off triacs coupled to the plurality of LEDs. A controller is coupled to the switching matrix responsive to a voltage of a rectified AC halfwave, wherein combinations of the plurality of LEDs are altered to ensure a maximum operating voltage of the plurality of LEDs is not exceeded. A current limiting device is coupled to the combinations of the plurality of LED to regulate current.In a second embodiment an offline charge pump utilizes a switching matrix to recombine capacitors in accordance with the voltage on the AC half wave and then in accordance with a desired output voltage to feed a load, such that said recombinations occur at a frequency much higher than the frequency of the AC rectified half wave such that charge is “pumped” from the input at one voltage to the output at another voltage through the AC halfwave while providing a constant output voltage to the load.
摘要:
Methods and circuits are provided to create small, power minimizing, multi-channel high voltage drivers for micro-electromechanical systems (MEMS). A resistor calibration circuit is introduced to allow on chip resistor dividers to be calibrated against a single precision high voltage resistor divider, eliminating the cost and printed circuit board real estate associated with multiple resistor dividers connected to each channel. Additionally, a multiple-power rail configuration is provided to reduce power to the overall system by producing several rails generated by a boost converter or a capacitive charge pump, where the voltage output of the rails is produced to group rails of lesser voltage requirement rather than connecting all channels to the same high voltage rail on a dynamic basis.
摘要:
Methods and circuits are provided to create small, power minimizing, multi-channel high voltage drivers for micro-electromechanical systems (MEMS). A resistor calibration circuit is introduced to allow on chip resistor dividers to be calibrated against a single precision high voltage resistor divider, eliminating the cost and printed circuit board real estate associated with multiple resistor dividers connected to each channel. Additionally, a multiple-power rail configuration is provided to reduce power to the overall system by producing several rails generated by a boost converter or a capacitive charge pump, where the voltage output of the rails is produced to group rails of lesser voltage requirement rather than connecting all channels to the same high voltage rail on a dynamic basis.
摘要:
In one embodiment, a Light Emitting Diode (LED) driving device for driving a plurality of LEDs has a switching matrix utilizing a plurality of one of a turn off thyristors or turn off triacs coupled to the plurality of LEDs. A controller is coupled to the switching matrix responsive to a voltage of a rectified AC halfwave, wherein combinations of the plurality of LEDs are altered to ensure a maximum operating voltage of the plurality of LEDs is not exceeded. A current limiting device is coupled to the combinations of the plurality of LED to regulate current.In a second embodiment an offline charge pump utilizes a switching matrix to recombine capacitors in accordance with the voltage on the AC half wave and then in accordance with a desired output voltage to feed a load, such that said recombinations occur at a frequency much higher than the frequency of the AC rectified half wave such that charge is “pumped” from the input at one voltage to the output at another voltage through the AC halfwave while providing a constant output voltage to the load.