Abstract:
A refrigeration system includes a normal refrigerant path arranged between a condenser and an evaporator, and an assist refrigerant path arranged between the condenser and the evaporator, wherein the assist refrigerant path is activated during low ambient conditions. The assist refrigerant path may include a solenoid valve and an expansion valve arranged between the condenser and the evaporator. The assist refrigerant path may be adapted to regulate the evaporator temperature.
Abstract:
A multi-beam electron gun provides a plurality N of cathode assemblies comprising a cathode, anode, and focus electrode, each cathode assembly having a local cathode axis and also a central cathode point defined by the intersection of the local cathode axis with the emitting surface of the cathode. Each cathode is arranged with its central point positioned in a plane orthogonal to a device central axis, with each cathode central point an equal distance from the device axis and with an included angle of 360/N between each cathode central point. The local axis of each cathode has a cathode divergence angle with respect to the central axis which is set such that the diverging magnetic field from a solenoidal coil is less than 5 degrees with respect to the projection of the local cathode axis onto a cathode reference plane formed by the device axis and the central cathode point, and the local axis of each cathode is also set such that the angle formed between the cathode reference plane and the local cathode axis results in minimum spiraling in the path of the electron beams in a homogenous magnetic field region of the solenoidal field generator.
Abstract:
The present invention relates to a communications system (1) for making multimedia calls. The system comprises two multimedia terminals (10,12) and communication means for making a multimedia call over a shared communications network (20), including a firewall (26) through which the multimedia call must pass, and which restricts certain types of communication. Each terminal (10,12) has a number of logical communication ports for the multimedia call, including at least one dynamically assigned port. In the course of setting up the multimedia call, at least one of the terminals (10,12) is adapted to send a request to the other of the terminals to open up one or more of the dynamic ports in the other terminal. The system includes a proxy server (40) between the terminals (10,12) that acts for each terminal as a proxy for the other terminal during the course of the call. The proxy server (40) has logical communication ports for communication with the terminals including one or more pre-assigned ports. The firewall (26) is configured not to restrict communication between one or both terminals (10,12) and the pre-assigned port(s) of the proxy server (40). The proxy server (40) is configured to receive and forward the request(s) to open up said dynamic port(s) via one of its pre-assigned ports.
Abstract:
The present invention relates to a communications system (1) for handling communications sessions, for example multimedia calls or voice calls. The communications system (1) comprises a local terminal (10), an external server (40), a proxy interface agent (PIA) (11) between the terminal (10) and a shared network (20). The communication means includes a NAT function (32) through which the communications session must pass. The communications session is carried over the network (20) over one or more logical channels between the terminal (10) and the external server (40), during which the first NAT function (32) applies network address mappings on the terminal's transport addresses (14). The PIA (11) acts on behalf of the terminal (10) in communications with the external server (40), and establishes a logical channel on an outbound connection to the server that serves as a control channel between the PIA (11) and the server (40). The PIA (11) establishes dynamic outbound connections to the server (40), and in response to a request from the server or in response to a request from the PIA itself (11), makes one or more associations between the terminal's transport address(es) (14) and identifiable logical channel(s) between the PIA (11) and the server. These identifiable logical channel(s) are established on one or more of the dynamic outbound connections from the PIA (11) to the server (40).
Abstract:
A method of forming a branch-off seal between a heat-shrinkable sleeve and at least two spaced-apart elongate substrates, which comprises the steps of:(a) positioning the substrates within the heat-shrinkable sleeve;(b) positioning between the substrates and within the sleeve at an open end thereof a plug having a larger cross-sectional size at a first position away from said open end and a smaller cross-sectional size at a second position towards said open end;(c) positioning a heat-activatable sealing material at the first position;(d) shrinkable conduits in the sleeve by positioning one or more clips at the open end of the sleeve such that the substrates and the plug are in respective conduits; and(e) while the clip remains on the sleeve, applying heat so as to affect shrinkage of the sleeve to activate the sealant, and form the desired seal.
Abstract:
A nozzle chip (3) for ejecting a liquid such as in an electrospray device is built from a substrate chip having grooves (5, 7) on a top surface. A lid (25) is attached to the top surface closing the grooves to form channels one of which has an open outlet end (9). At the outlet end a nozzle is formed at or attached and it has an outlet opening from which the liquid is to be ejected. Alignment recesses (13, 15) are made at edges of the substrate chip and they are accurately positioned in relation to the outlet opening, the alignment recesses allowing an accurate mounting of nozzle chip giving the outlet opening of the nozzle a reproducible position in the device where it is to be used. At the outlet end a recess (17) in the substrate chip can be provided and the nozzle can then be located in the recess to mechanically protect it.
Abstract:
Engine speed data (N) and engine fueling data (MFDES) are processed to develop rate-of change data values for both engine fueling (FUELING_DIFFERENCE_FILTERED) and engine speed (ENGINE SPEED_DIFFERENCE_FILTERED). The latter are processed according to a look-up table (30) to select a data value for an adder (ENGINE SPEED/FUELING_ROC_ADDER). The adder data value is added to the data value of a control parameter, such as engine fueling (MFDES), to compensate for engine transients.
Abstract:
A coupled cavity traveling wave tube has periodic permanent magnet (PPM) RF cavity structures, each of which has a plurality of permanent magnets placed substantially equidistant from a central axis, and which are outside the extent of a plurality of electron beam tunnels arranged substantially equidistant from the central axis and within the extents of the plurality of permanent magnets. Each coupled cavity RF structure is formed by adjacent ferrous polepieces and a cylindrical wall which is beyond the extent of one or more coupling apertures which couple RF energy from one coupled cavity structure to an adjacent RF cavity.
Abstract:
A system for controlling a defrost cycle of an evaporator having a sensor module and a control module. The sensor module includes a light source configured to emit light toward the evaporator when activated and to deactivate in response to a lockout signal. The sensor module also includes a light sensor configured to determine an amount of the emitted light reflected by the evaporator and to generate a detected light signal that corresponds to the amount of the emitted light reflected by the evaporator. The control module is configured to receive the detected light signal from the light sensor and to compare the detected light signal to a preset threshold. The control module is also configured to generate a termination signal when the detected light signal is less than the preset threshold and to generate the lockout signal when the detected light signal is greater than the preset threshold.
Abstract:
A periodic permanent magnet (PPM) klystron has beam transport structures and RF cavity structures, each of which has permanent magnets placed substantially equidistant from a beam tunnel formed about the central axis, and which are also outside the extent of a cooling chamber. The RF cavity sections also have permanent magnets which are placed substantially equidistant from the beam tunnel, but which include an RF cavity coupling to the beam tunnel for enhancement of RF carried by an electron beam in the beam tunnel.