Abstract:
This application relates to thiophene azo dyes for use as hueing agents, laundry care compositions comprising such thiophene azo dyes, processes for making such thiophene azo dyes, and laundry care compositions and methods of using the same. The thiophene azo dyes contain a formally charged moiety and are generally comprised of at least two components: at least one chromophore component and at least one polymeric component. Suitable chromophore components generally fluoresce blue, red, violet, or purple color when exposed to ultraviolet light, or they may absorb light to reflect these same shades. These thiophene azo dyes are advantageous in providing a hueing effect, for example, a whitening effect to fabrics, while not building up over time and causing undesirable blue discoloration to the treated fabrics. The thiophene azo dyes are also generally stable to bleaching agents used in laundry care compositions.
Abstract:
Bisurea gelling agents that impart a number of unexpected benefits within various gelled formulations and exhibit great versatility in terms of gelling capabilities for many types of solvents are provided. Such gelling agents should include pendant groups, such as sterically hindering alkyl groups attached to polyoxyalkylenated moieties that allow the gelling agent to be compatible with the target liquid system at elevated temperatures, while controlling and/or limiting the network formation and strength during the cooling cycle. Alternatively, novel gelling agents having two urea groups but that are asymmetrical in configuration have been produced in order to provide the same control in temperature, compatibility, and efficiency. Final gelled formulations, such as antiperspirant sticks and other like consumer items, are provided as well within this invention.
Abstract:
The invention provides devices, systems and methods for tissue approximation and repair at treatment sites. The devices, systems and methods of the invention will find use in a variety of therapeutic procedures, including endovascular, minimally-invasive, and open surgical procedures, and can be used in various anatomical regions, including the abdomen, thorax, cardiovascular system, heart, intestinal tract, stomach, urinary tract, bladder, lung, and other organs, vessels, and tissues. The invention is particularly useful in those procedures requiring minimally-invasive or endovascular access to remote tissue locations, where the instruments utilized must negotiate long, narrow, and tortuous pathways to the treatment site. In addition, many of the devices and systems of the invention are adapted to be reversible and removable from the patient at any point without interference with or trauma to internal tissues.
Abstract:
This invention relates to bis-azo colorants for use as bluing agents, laundry care compositions comprising bis-azo colorants that may serve as bluing agents, processes for making such bluing agents and laundry care compositions and methods of using the same. The bluing agents are generally comprised of at least two components: at least one chromophore component and at least one polymeric component. These bluing agents are advantageous in providing a whitening effect to fabrics, while not building up over time and causing undesirable blue discoloration to the treated fabrics.
Abstract:
This invention relates to novel whitening agents for cellulosic substrates. The whitening agents are comprised of at least two components: at least one chromophore component and at least one polymeric component. Suitable chromophore components generally fluoresce blue, red, violet, or purple color when exposed to ultraviolet light, or they may absorb light to reflect these same shades. The whitening agents are further characterized by having a dispersion component value of the Hansen Solubility Parameter of less than or equal to about 17 MPa0.5. This invention also relates to laundry care compositions including but not limited to liquid and/or powder laundry detergent formulations and rinse added fabric softening (RAFS) compositions that comprise such whitening agents.
Abstract:
This application relates to thiophene azo dyes for use as hueing agents, laundry care compositions comprising such thiophene azo dyes, processes for making such thiophene azo dyes, and laundry care compositions and methods of using the same. The thiophene azo dyes contain a formally charged moiety and are generally comprised of at least two components: at least one chromophore component and at least one polymeric component. Suitable chromophore components generally fluoresce blue, red, violet, or purple color when exposed to ultraviolet light, or they may absorb light to reflect these same shades. These thiophene azo dyes are advantageous in providing a hueing effect, for example, a whitening effect to fabrics, while not building up over time and causing undesirable blue discoloration to the treated fabrics. The thiophene azo dyes are also generally stable to bleaching agents used in laundry care compositions.
Abstract:
This invention relates to novel whitening agents for cellulosic substrates. The whitening agents are comprised of at least two components: at least one chromophore component and at least one polymeric component. Suitable chromophore components generally fluoresce blue, red, violet, or purple color when exposed to ultraviolet light, or they may absorb light to reflect these same shades. The whitening agents are further characterized by having a dispersion component value of the Hansen Solubility Parameter of less than or equal to about 17 MPa0.5. This invention also relates to laundry care compositions including but not limited to liquid and/or powder laundry detergent formulations and rinse added fabric softening (RAFS) compositions that comprise such whitening agents.
Abstract:
This invention relates to novel whitening agents for cellulosic substrates. The whitening agents are comprised of at least two components: at least one chromophore component and at least one polymeric component. Suitable chromophore components generally fluoresce blue, red, violet, or purple color when exposed to ultraviolet light, or they may absorb light to reflect these same shades. The whitening agents are further characterized by having a dispersion component value of the Hansen Solubility Parameter of less than or equal to about 17 MPa0.5. This invention also relates to laundry care compositions including but not limited to liquid and/or powder laundry detergent formulations and rinse added fabric softening (RAFS) compositions that comprise such whitening agents.
Abstract:
Z buffer traffic experienced during graphics processing is reduced by using a compression mechanism to reduce the amount of information stored in the z buffer. The compression mechanism may be a delta-based z compression mechanism, which stores deltas in the z buffer rather than actual z values. These deltas may be used at a later time to compute the z values. By storing deltas instead of actual z values, the compression mechanism makes it possible to store significantly less information in the z buffer. By reducing the amount of information stored in the z buffer, less information will be read from and written to the z buffer, which in turn, reduces z buffer traffic. To further reduce z buffer traffic, selected deltas may be stored not in the z buffer but rather in a storage local to a graphics processing mechanism (GPM). Storing selected deltas in local storage obviates the need to read from or write to the z buffer for those deltas. As a result, z buffer traffic is even further reduced.
Abstract:
A wavelength-selective optical switch having a first input port for accepting a plurality of copropagating optical channels, each of the channels having a distinct wavelength band. The optical switch includes first and second output ports. A wavelength-selective optical filter is connected to receive the copropagating optical channels from the first input port to extract a selected one of the channels while allowing the remaining channels to copropagate to the first output port. An interferometric switch is connected to receive the selected extracted channel; the interferometric switch includes a controller for controlling propagation of the selected extracted channel to either the second output port, the optical filter, or both. The optical filter is connected to receive from the interferometric switch an optical channel to be combined with the remaining copropagating channels and all directed to the first output port. In a first control state of the controller, the interferometric switch is adapted to direct the selected extracted channel to the optical filter, while in a second control state of the controller, the interferometric switch is adapted to direct the selected extracted channel to the second output port. A second input port can be provided for accepting an injected optical channel having a wavelength band corresponding to the wavelength band of the selected extracted channel. This second input port is connected to direct the injected optical channel to the interferometric switch. In this scenario, the interferometric switch is adapted, in the second control state of the controller, to direct the injected channel to the optical filter, and is adapted to direct the injected channel, in a first control state of the controller, to the second output port.