摘要:
The video camera apparatus obtains a still image sensing signal with high image quality in a progressive scan mode and is capable of recording onto a recording medium by a recording means which performs recording operation corresponding to an interlace scan mode. An image sensing signal read from a CCD image sensor 23 in the interlace scan mode is recorded directly onto a recording medium by a recording/reproducing section 5 through a camera signal processing circuit 24, while an image sensing signal read from the CCD image sensor 23 in the progressive scan mode is converted into an interlace scan signal and is then recorded onto a recording medium by the recording/reproducing section 5.
摘要:
The video camera apparatus obtains a still image sensing signal with high image quality in a progressive scan mode and is capable of recording onto a recording medium by a recording means which performs recording operation corresponding to an interlace scan mode. An image sensing signal read from a CCD image sensor 23 in the interlace scan mode is recorded directly onto a recording medium by a recording/reproducing section 5 through a camera signal processing circuit 24, while an image sensing signal read from the CCD image sensor 23 in the progressive scan mode is converted into an interlace scan signal and is then recorded onto a recording medium by the recording/reproducing section 5.
摘要:
The video camera apparatus obtains a still image sensing signal with high image quality in a progressive scan mode and is capable of recording onto a recording medium by a recording means which performs recording operation corresponding to an interlace scan mode. An image sensing signal read from a CCD image sensor 23 in the interlace scan mode is recorded directly onto a recording medium by a recording/reproducing section 5 through a camera signal processing circuit 24, while an image sensing signal read from the CCD image sensor 23 in the progressive scan mode is converted into an interlace scan signal and is then recorded onto a recording medium by the recording/reproducing section 5.
摘要:
Video signal processing apparatus for use with a video camera having a line scanning line period during which useful video information is provided and a flyback period during which an optical black signal level is provided. Replacement black signal information that is a function of the optical black signal level is inserted into a portion of the flyback period. When the camera is of the type having a complementary color matrix filter which produces odd and even raster scan lines of image pickup signals with different modulation components, another aspect of this invention provides improved contour correction. Modulation components in a scan line of image pickup signals caused by the patterns of filter elements included in the matrix are removed, thereby producing an averaged scan line of image signals from which is extracted a signal component that is uncorrelated from one line to the next. Prior to such extraction, that portion of an averaged scan line of image signals which exceeds a predetermined level that is less than the lowest average level of a scan line of image signals which would saturate video processing circuitry is clipped. The extracted, uncorrelated signal component is combined with an averaged scan line of image signals to produce a contour-emphasized luminance signal.
摘要:
A luminance signal is formed from a first luminance signal produced by mixing a plurality of complementary color signals obtained from a television camera having complementary color filters and from a second luminance signal produced by mixing at a predetermined ratio a plurality of primary color signals that are derived from the plurality of complementary color signals, the first and second luminance signals are then mixed so that the composite output signal forms the desired luminance signal. The first luminance signal is level adjusted based upon the color temperature detection signal derived from a color temperature detector and a second luminance signal is balanced in level based upon this color temperature detection signal. The second luminance signal is derived by mixing the three primary color signals at a predetermined ratio. This ratio is variable and can be controlled in response to an automatic gain control signal derived from an automatic gain control circuit that receives the output of the television camera.
摘要:
In a high speed image capturing state, a camera signal processing circuit is not needed to perform a signal process at a high screen rate, but at a regular screen rate. In the high speed image capturing mode, raw data of 240 fps received from an image sensor 101 are recorded on a recording device 111 through a conversion processing section 201 and a recording device controlling circuit 210. Raw data that have been decimated and size-converted are supplied to a camera signal processing circuit 203 through a pre-processing circuit 202 and an image being captured is displayed on a display section 112 with a signal for which a camera process has been performed. In a reproducing state, raw data are read from the recording device 111 at a low screen rate according to a display performance of the display section 112 and the raw data that have been read are processed are processed by the pre-processing circuit 202 and the camera signal processing circuit 203 and a reproduced image is displayed by the display section 112.
摘要:
Previously available analog domain decimation techniques are limited to simple equally-weighted averaging of photosite outputs. Decimation of a Bayer pattern image by an even-factor, such as by two or six, using simple equally-weighted averaging of photosite outputs in the analog domain results in effective sampling locations that are unevenly spaced apart. Standard interpolation of the unevenly spaced effective sampling locations generates image artifacts that reduce the quality of the reconstructed image in the smaller format because standard interpolation methods assume that the effective sampling locations are evenly spaced. Implementations of systems, methods and apparatus disclosed herein aim to produce substantially evenly spaced effective sampling locations in the analog domain. More specifically, in some implementations, the unequally-weighted-average even-factor decimation methods disclosed herein produce substantially more evenly spaced effective sampling locations as compared to the equally-weighted-average even-factor decimation processes previously used in the analog domain.
摘要:
In a high speed image capturing state, a camera signal processing circuit is not needed to perform a signal process at a high screen rate, but at a regular screen rate. In the high speed image capturing mode, raw data of 240 fps received from an image sensor 101 are recorded on a recording device 111 through a conversion processing section 201 and a recording device controlling circuit 210. Raw data that have been decimated and size-converted are supplied to a camera signal processing circuit 203 through a pre-processing circuit 202 and an image being captured is displayed on a display section 112 with a signal for which a camera process has been performed. In a reproducing state, raw data are read from the recording device 111 at a low screen rate according to a display performance of the display section 112 and the raw data that have been read are processed are processed by the pre-processing circuit 202 and the camera signal processing circuit 203 and a reproduced image is displayed by the display section 112.
摘要:
An optical black level control circuit comprises a digital black level adjusting circuit for generating a black level correction signal by digital processing using a given time constant when an output error between an optical black level and a reference optical black level signal is within a predetermined range so that an error becomes less than a predetermined value and an analog black level adjusting circuit for compensating for said error when said error exceeds the predetermined range.
摘要:
An imaging apparatus can obtain a high quality still picture imaging signal in the all pixels read out mode and output it by means of an output processing means adapted to the interlaced read out mode. The imaging signal read out from a CCD image sensor 23 in the interlaced read out mode is directly supplied to a DV recording/reproducing processing section 4 by way of a camera signal processing circuit 24. The imaging signal read out from said CCD image sensor 23 in the apparatus is converted into an interlaced signal by a scan conversion section 3A, which is then supplied to the DV recording/reproducing processing section 4.