Abstract:
A wireless power feeding system capable of long distance and highly efficient space transmission of power is provided. A wireless power feeding system includes a power transmitter, a power receiver, and a power receiving body. The power transmitter generates electromagnetic waves. The power receiver is supplied with power by means of the electromagnetic waves received from the power transmitter using a magnetic field resonance phenomenon. The power receiving body is inserted into an electromagnetic field created by the power transmitter and the power receiver, and receives power by means of the electromagnetic field.
Abstract:
Characteristics of a circuit element are predicted accurately by taking account not only of the temperature variation due to self-heating of the element but also of temperature variation due to heat transmission from an adjoining heater element. With reference to an electric network supplied from an electric network input unit (2) and a heat network supplied from a heat network input unit (3), a simulation unit (4) determines a first heat generation temperature resulting from the amount of self-heat generation of that element and a second heat generating temperature resulting from the amount of heat flowing into that element from other elements, respectively, for a plurality of elements which make up a semiconductor integrated circuit, calculates the element temperature of that element based on the first and second heat generation temperatures, and then calculates the voltage value and the current value in the element at that element temperature based on previously provided data indicative of temperature dependency of that element.
Abstract:
A semiconductor device includes a semiconductor element having a rectangular two-dimensional geometry and serving as a heat source, a first heat sink section including the semiconductor element mounted thereon, and a second heat sink section joined to an opposite side of the first heat sink section that includes the semiconductor element. A relation among directional components of thermal conductivity is K1yy≧K1xx>K1zz, where directional components of a three-dimensional thermal conductivity of the heat sink section in X, Y, and Z directions are determined as Kxx, Kyy, and Kzz. A relation among directional components of a thermal conductivity of the second heat sink section is K2zz≧K2yy>K2xx or K2yy≧K2zz>K2xx, where the directional components of the thermal conductivity of the second heat sink section in X, Y, and X directions are determined as K2xx, K2yy, and K2zz.
Abstract:
A semiconductor device having sufficiently high heat dissipation performance while inhibiting an increase in the area of a chip is provided. In semiconductor device 1, a plurality of HBTs 20 and a plurality of diodes 30 are one-dimensionally and alternately arranged on semiconductor substrate 10. Anode electrode 36 of diode 30 is connected to emitter electrode 27 of HBT 20 via common emitter wiring 42. Diode 30 works as heat dissipating elements dissipating to semiconductor substrate 10 the heat transmitted through common emitter wiring 42 from emitter electrode 27, and also works as a protection diode connected in parallel between an emitter and a collector of HBT 20.
Abstract:
A wireless power feeding system capable of long distance and highly efficient space transmission of power is provided. A wireless power feeding system includes a power transmitter, a power receiver, and a power receiving body. The power transmitter generates electromagnetic waves. The power receiver is supplied with power by means of the electromagnetic waves received from the power transmitter using a magnetic field resonance phenomenon. The power receiving body is inserted into an electromagnetic field created by the power transmitter and the power receiver, and receives power by means of the electromagnetic field.
Abstract:
A semiconductor device, comprising: a semiconductor element 20 having a rectangular two-dimensional geometry and serving as a heat source; and a heat sink section 25 having the semiconductor element 20 mounted thereon, wherein a relation among the directional components of said thermal conductivity is: Kzz≧Kyy>Kxx, where directional components of three-dimensional thermal conductivity of the heat sink section 25 in X, Y and Z directions are determined as Kxx, Kyy and Kzz, and where the longer side direction of the semiconductor element 20 is defined as X direction, the shorter side direction thereof is defined as Y direction and the thickness direction is defined as Z direction.
Abstract:
A semiconductor device, comprising: a semiconductor element 20 having a rectangular two-dimensional geometry and serving as a heat source; and a heat sink section 25 having the semiconductor element 20 mounted thereon, wherein a relation among the directional components of said thermal conductivity is: Kzz≧Kyy>Kxx, where directional components of three-dimensional thermal conductivity of the heat sink section 25 in X, Y and Z directions are determined as Kxx, Kyy and Kzz, and where the longer side direction of the semiconductor element 20 is defined as X direction, the shorter side direction thereof is defined as Y direction and the thickness direction is defined as Z direction.
Abstract:
A heterojunction bipolar transistor of the present invention is produced from a wafer including a substrate and a collector layer of a first conductivity type, a base layer of a second conductivity type and an emitter layer of the first conductivity type sequentially laminated on the substrate in this order. First, the wafer is etched up to a preselected depth of the collector layer via a first photoresist, which is formed at a preselected position on the emitter layer, serving as a mask. Subsequently, the collector layer etched with at least the sidewalls of the base layer and collector layer, which are exposed by the first etching step, and a second photoresist covering part of the surface of the collector layer contiguous with the sidewalls serving as a mask.
Abstract:
A semiconductor device includes a semiconductor element having a rectangular two-dimensional geometry and serving as a heat source, a first heat sink section including the semiconductor element mounted thereon, and a second heat sink section joined to an opposite side of the first heat sink section that includes the semiconductor element. A relation among directional components of thermal conductivity is K1yy≧K1xx>K1zz, where directional components of a three-dimensional thermal conductivity of the heat sink section in X, Y, and Z directions are determined as Kxx, Kyy, and Kzz. A relation among directional components of a thermal conductivity of the second heat sink section is K2zz≧K2yy>K2xx or K2yy≧K2zz>K2xx, where the directional components of the thermal conductivity of the second heat sink section in X, Y, and X directions are determined as K2xx, K2yy, and K2zz.
Abstract:
A balun circuit comprising first through third CPW lines becoming signal I/O ports, a first differential transmission line for linking the central conductor of the second CPW line and the ground conductor of the first CPW line and for linking the ground conductor of the second CPW line and the central conductor of the first CPW line, a second differential transmission line for linking the central conductors of the first and third CPW lines and for linking the ground conductors of the first and third CPW lines, and a joint for connecting at least two ground conductors of the first through third CPW lines. The differential transmission line has a first line formed in a dielectric layer on a substrate, a second line arranged in the underlying layer, and an underlying line at a fixed potential arranged between the substrate and the second line.