Abstract:
A passive matrix organic light emitting display system includes a plurality of pixels configured for emitting light when energized by one of a plurality of row electrodes and one of a plurality of column electrodes. The display system also comprises a plurality of column drivers configured for energizing the plurality of column electrodes. The display system also comprises a plurality of row drivers configured for energizing the plurality of row electrodes. At least two of the plurality of row drivers are configured to simultaneously energize at least two of the plurality of row of electrodes. A method of displaying information on a passive matrix organic light emitting display system is also disclosed.
Abstract:
An optical coupler is designed to be utilized with multiple light sources. The optical coupler can include a reflecting mirror, a plurality of coupling rods, and an integrating rod. The reflecting mirror receives light from the light sources and reflects light to the coupling rods. The coupling rods provide a path for the light to the integrating rod.
Abstract:
A high-reliability display system is disclosed. The display system includes a plurality of projection channels. Each projection channel projects a substantially mutually exclusive portion of an image onto a display area. A controller determines the content and size of each portion that each projection channel projects onto the display area so that the image substantially fills the display area during normal conditions. When one of the projection channels is inoperative, the controller adjusts the portions of the image that are projected by the operative projection channels to optimize the image on the display area.
Abstract:
Each element of the display includes a first electrode disposed on a transparent, insulating substrate. A second electrode is disposed over the first electrode. An interconnect bump of photoresist is formed between the first electrode and the second electrode within one or more elements of the display to extend the second electrode away from the insulating substrate so the second electrode may be operably coupled to an interconnect substrate.
Abstract:
A head up display system for a vehicle includes an image source and an optical combiner which reflects the projected image from the image source toward an observer for observation. The optical combiner is positioned so that the observer, in a line of sight, sees both a visual exterior view of an outside scene through the combiner and the projected image in the combiner. In disclosed embodiments, the optical combiner comprises wedge lenses.
Abstract:
An organic polarized light source is provided that includes a substrate, a striated layer, and an anode formed on the substrate. The organic polarized light source further includes an organic hole transport layer formed on the anode, an organic electron transport layer formed on the hole transport layer, and a cathode formed on the electron transport layer.
Abstract:
The present invention provides an optical display system and method for producing images and presenting the images for observation in combination with an observer's visual exterior view of an outside scene. The optical display system may include an image source for projecting an image, and a curved beam combination mirror (CBCM) or beam combination mirror (BCM) for reflecting the projected image toward an observer for observation. The image source may be a transmissive LCD, a reflective LCD, a digital micromirror device, a laser display, or the like. The CBCM or BCM may be positioned so that the observer, in a line of sight, may see a visual exterior view of an outside scene through the CBCM or BCM and the projected image in the CBCM or BCM.
Abstract:
A method of reducing luminance decay of emissive elements in a matrix addressed emissive display device includes generating control data corresponding to a static image to be displayed on a matrix of individually addressable emissive display elements. Drive signals are generated as a function of the control data, and are provided to the matrix to thereby energize the corresponding emissive display elements of the matrix in order to display the static image on the matrix. The control data are altered substantially continuously in order to substantially continuously move the static image on the matrix.
Abstract:
A head up display system for a vehicle that includes a compact image source for projecting an image. The compact image source may be foldable up toward or into a cockpit ceiling of the vehicle, be positioned within a dashboard of the vehicle, or located at another suitable position. A combiner reflects the projected image with optical power toward an observer for observation. The combiner is positioned so that the observer, in a line of sight, may see a visual exterior view of an outside scene through the combiner and the projected image in the combiner. In a preferred embodiment, the image source includes an illumination system that includes a high power light emitting diode (LED) array assembly. A Fresnel lens array is operatively associated with the LED array assembly for receiving light produced by the LED and providing a nearly collimated light output. A spatial light modulator receives the nearly collimated light output. The preferred combiner is a meniscus combiner that includes a meniscus lens; a multi-layer dichroic coating formed on a first surface of the meniscus lens; and, an anti-reflection coating formed on a second, opposite surface of the meniscus lens. The meniscus combiner preferably utilizes a non-symmetric aspheric meniscus lens.
Abstract:
A method of forming a conformal electronic scanning array (ESA) is disclosed. The ESA is formed using rolling techniques similar to those used in forming LCD displays. If the layers forming the ESA are made of substantially transparent materials, the ESA may be applied to an outer surface of a display, such as a flexible display. The ESA may also be applied to a window or other non-planar surface such as an outer surface of a vehicle, or may be integrated into a computer display.