摘要:
The present invention provides a cleaning substrate of a substrate processing equipment, which comprises a cleaning layer comprising a heat resistant resin with a storage modulus (1 Hz) at 20° C. up to 150° C. being 5×107 Pa to 1×109 Pa on at least one face of the substrate; and a polyimide resin suitable as the heat resistant resin for the cleaning layer and usable under circumstances possibly involving the generation of serious disadvantages due to silicone contamination, such as for HDD application and some semiconductor applications.
摘要翻译:本发明提供了一种基板处理设备的清洁基板,其包括在20℃至150℃下具有储能模量(1Hz)的耐热树脂的清洁层,为5×10 7 Pa至1×10 9 Pa 底物的至少一个面; 以及适合用作清洁层的耐热树脂的聚酰亚胺树脂,并且可用于可能涉及由于硅氧烷污染而产生严重缺点的环境,例如用于HDD应用和一些半导体应用。
摘要:
A cleaning sheet which comprises a porous layer as a cleaning layer; or a cleaning sheet which comprises a sheet material having a porous layer and, formed on one side of the sheet material, an adhesive layer.
摘要:
An aim of the invention is to provide a cleaning member which causes no contamination of a substrate processing equipment by ionic impurities in the removal of foreign matters attached to the interior of the equipment through cleaning by the conveyance thereof into the equipment, a cleaning member which causes little contamination of a substrate processing equipment by metal impurities attributed to a protective film in the removal of foreign matters attached to the interior of the equipment through cleaning by the conveyance thereof into the equipment and a cleaning member which causes no contamination of a substrate processing equipment by metal impurities in the removal of foreign matters attached to the interior of the equipment through cleaning by the conveyance thereof into the equipment. The means for solving the aims of the invention concerns a cleaning sheet comprising a cleaning layer provided on one side of a base material, from which cleaning layer F−, Cl−, Br−, NO2−, NO3−, PO43−, SO42−, Na+, NH4+ and K+ are extractable with pure water each in an amount of not greater than 20 ppm (as extracted under boiling at 120° C. for 1 hour), and a pressure-sensitive adhesive layer provided on the other, a carrying material with cleaning capacity comprising the aforementioned cleaning sheet laminated on a carrying material with a pressure-sensitive adhesive layer and a method for cleaning a substrate processing equipment which comprises conveying the aforementioned carrying material with cleaning capacity into the substrate processing equipment; a cleaning sheet comprising a releasable protective film laminated on a cleaning layer, wherein the protective film is formed by a material from which metal elements such as Na, K, Ca, Mg, Al, Ti, Cr, Mn, Fe, Co, Ni, Cu and Zn or compounds thereof are transferred to a silicon wafer each in an amount of not greater than 1×1012 atoms/cm2 as calculated in terms of metal element when the protective film is brought into contact with (the mirror surface of) the silicon wafer at 23° C. for 1 minute, a carrying material with cleaning capacity comprising the aforementioned cleaning sheet laminated on a carrying material with a pressure-sensitive adhesive layer and a method for cleaning a substrate processing equipment which comprises conveying the aforementioned carrying material with cleaning capacity into the substrate processing equipment with the releasable protective film peeled off the cleaning layer; and a cleaning sheet comprising a cleaning layer provided on one side of a base material, which cleaning layer containing metal elements such as Na, K, Mg, Al, Ca, Ti, Cr, Mn, Fe, Co, Ni, Cu and Zn or compounds thereof each in an amount of not greater than 5 ppm (μg/g) as calculated in terms of metal element, and a pressure-sensitive adhesive layer provided on the other, a carrying material with cleaning capacity comprising the aforementioned cleaning sheet laminated on a carrying material with a pressure-sensitive adhesive layer and a method for cleaning a substrate processing equipment which comprises conveying the aforementioned carrying material with cleaning capacity into the substrate processing equipment.
摘要:
A cleaning sheet for cleaning foreign matters away from the interior of the substrate processing equipment is provided. The cleaning sheet includes a cleaning layer having substantially no tackiness and having a tensile modulus of not lower than 0.98 N/mm2 as determined according to JIS K7127. Alternatively, the cleaning sheet includes a cleaning layer having a Vickers hardness of not lower than 10 MPa.
摘要翻译:提供了一种用于清除离开基板处理设备内部的异物的清洁片。 清洁片包括基本上没有粘性并且根据JIS K7127测定的拉伸模量不低于0.98N / mm 2的清洁层。 或者,清洁片包括维氏硬度不低于10MPa的清洁层。
摘要:
A cleaning sheet which comprises a porous layer as a cleaning layer; or a cleaning sheet which comprises a sheet material having a porous layer and, formed on one side of the sheet material, an adhesive layer.
摘要:
The invention provides cleaning sheets for use in cleaning, e.g., various substrate-processing apparatus, systems for conveying exposure masks (reticles) in microfabrication, etc., and a method of cleaning these with the cleaning sheets. A cleaning sheet which comprises a sheet material comprising a thermoset resin layer having porosity and, formed on one side of the sheet material, a pressure-sensitive adhesive layer comprising a thermoplastic resin.
摘要:
A cleaning sheet has a cleaning layer having a surface resistivity not less than 1×1013 &OHgr;/□. In a method of manufacturing a conveying member with a cleaning function, for sticking the cleaning sheet, in which the cleaning layer formed of an adhesive that is polymerized/cured by an active energy is provided onto one surface of a base material and an ordinary adhesive layer is provided onto the other surface thereof, onto the conveying member via an ordinary adhesive layer to have a shape larger than the shape of the conveying member and then cutting the cleaning sheet along a shape of the conveying member, wherein a polymerizing/curing reaction of the cleaning layer is carried out after the cleaning sheet is cut out into the shape of the conveying member.
摘要:
The present invention is intended to collectively remove unnecessary resist material and side wall protective film after dry etching by side wall protection process, making it possible to simplify the process for the preparation of semiconductors, etc. The process according to the present invention comprises removing unnecessary resist material (3) left behind after dry etching by side wall protection process with a resist pattern (3) present on a semiconductor substrate (2) as a mask and side wall protective film (4) deposited on the side wall (22) of pattern, said process comprising the steps of applying an pressure-sensitive adhesive sheet (1) to said substrate (2), heating the pressure-sensitive adhesive layer (1) under pressure so that the pressure-sensitive adhesive (11) comes in contact with up to the side wall (4) of pattern, and then collectively peeling said pressure-sensitive adhesive sheet (1), said resist material (3) and said side wall protective film (4) off said substrate.
摘要:
The present invention provides a process for the peeling of a resist material with a pressure-sensitive adhesive sheet which involves the improvement in the removal of resist material or the enhancement of peelability of resist material to certainly remove the resist material from the object regardless of the properties or treated state of the resist material. The process comprises (1) after the application of the pressure-sensitive adhesive sheet, effecting a stress-imparting treatment which causes shrinkage or expansion of the pressure-sensitive adhesive sheet so that a stress develops at the interface between the resist material and the object or (2) prior to the application of the resist material to the object, effecting surface treatment to the object such that the surface of the object has a surface free energy of to not greater than 60 dyne/cm.
摘要:
In accordance with the production process according to the present invention, a stamper having a desired pattern for the formation of a disc board can be produced without worsening the working atmosphere or causing any other problems. A novel process for the production of a stamper for the formation of a disc board is provided, which comprises applying an adhesive tape to the surface of a stamper body on which an unnecessary resist remains, and then peeling the adhesive tape off the stamper body so that the unnecessary resist is transferred to the adhesive tape to remove itself from the stamper body.