摘要:
In magnetic resonance angiography (MRA), the MRA data (40) is smoothed and converted into an isotropic format (52). A binary surface fitting mask (56) that differentiates vascular regions from surrounding tissue is generated from the isotropic MRA data. Vascular starting points (60) are identified based on the binary surface fitting mask. The vascular system corresponding to each starting point is tracked (62). The tracked vascular system is graphically displayed (68). Preferably, the arteries and the veins in the binary surface fitting mask data are differentiated (58) based on anatomical constraints. The tracking (62) preferably includes estimating an oblique plane that is orthogonal to the vessel (204), determining the vessel edges in the oblique plane (212), and determining an estimated vessel center in the oblique plane (216). The vessel edges are preferably determined by determining a raw vessel edge (208), and refining the raw vessel edge to obtain a refined vessel edge representation (212).
摘要:
A parameter compilation memory (62, 114) stores patient physiological information and contrast agent arrival or uptake times (tD, tA, tV) from past patients. A triggering or synchronizing window processor (64, 112) sets a triggering window, i.e. estimates the arrival time, based on the past patient information. A subject (16) disposed within an imaging region (12, 90) is injected with a contrast agent (66). Arrival of the contrast agent in the imaging region is detected (72, 110) with a real time tracking method. Diagnostic imaging is commenced on the first to occur of the detection of contrast agent arrival within the window and the end of the triggering window. The uptake times for the subject (16) are compared to those stored in the memory (62, 114) and analyzed to propose a diagnosis.
摘要:
An x-ray tube (1) includes a heat shield (130) which intercepts heat radiating from an anode (10), thereby reducing the temperature of a bearing assembly (62). The heat shield includes outer and inner concentric cylinders (132, 134) spaced from each other by a vacuum gap (138). The heat shield and a stationary portion (114) of the bearing assembly are both connected to a cold plate (150) so that heat is not conducted from the cylinders to the bearing assembly but is instead carried away by the cold plate to the surrounding cooling oil.
摘要:
An apparatus (20) for setting a filament (22) on an electrode (24) comprises a body (52) having a central member (54) with a longitudinal axis (A-A), a first end member (56) and a second end member (58). The first and second end members (56, 58) are located at opposite ends of the central member (54) and each extends away from the longitudinal axis (A-A) thereby forming a recess (59). Each end member (56, 58) includes a surface generally facing the recess (61, 63) and an outer surface (74, 76). A bore (68) in the body is adapted to receive a retaining member (not shown) for mounting the body (52) to the electrode (24). A cavity (70) extends through the first end member (56) from its outer surface (74) to its recess facing surface (61). A cavity (80) in the second end member (58) opens toward the recess (59). The cavities (70, 80) in the first end member (56) and second end member (58) are located opposite one another across the recess (59).
摘要:
A gradient coil assembly (22) generates magnetic field gradients across the main magnetic field of a magnetic resonance imaging apparatus and includes a base gradient coil set which generates magnetic field gradients which are substantially linear over a first useful imaging volume, and a correction gradient coil set which generates magnetic field gradients having substantially no first order moment. The correction gradient coil set produces third and higher order moments which combine with higher order terms of the base gradient coil set to produce magnetic field gradients which are substantially linear over a second useful imaging volume different from the first useful imaging volume. In a preferred embodiment, the second volume is continuously variable by adjusting the amounts of current applied to the base and correction coils.
摘要:
A computerized tomographic imaging system including a stationary gantry portion defining an examination region and a rotating gantry portion for rotation about the examination region. An x-ray source is disposed on the rotating gantry portion for projecting x-rays through the examination region. A plurality of modular radiation detector units are disposed across the examination region from the x-ray source. Each radiation detector unit includes an array of x-ray sensitive cells for receiving radiation from the x-ray source after it has passed through the examination region and for generating an analog signal indicative of the radiation received thereby. Each radiation detector unit also includes a plurality of integrated circuits connected to the x-ray sensitive cells with each integrated circuit including a plurality of channels. Each channel receives the analog signal from an x-ray sensitive cell and generates digital data indicative of the value of the analog signal.
摘要:
A dual filament x-ray tube assembly (16) includes an evacuated envelope (52) having an anode (54) disposed at a first end of the evacuated envelope (52) and a cathode assembly (62) disposed at a second end of the evacuated envelope (52). The cathode assembly includes a variable-length filament assembly (72, 74; 100) which emits electron beams for impingement on the anode (54) at focal spots having varying lengths. The cathode assembly (62) further includes a cathode cup (64, 66, 68; 110, 112) which is subdivided into a plurality of electrically insulated deflection electrodes (64, 66, 68; 110, 112). A filament select circuit (80) selectively and individually heats a portion of the variable-length filament assembly (72, 74). Electron beams emitted from the filament assembly (72, 74) are electrostatically focused and controlled by applying potentials to different ones of the deflection electrodes (64, 66, 68; 110, 112). The x-ray tube assembly (16) provides longer focal spots for thick-slice scanning applications and shorter focal spots for thin-slice scanning applications along with the benefit of electrostatic focusing and control.
摘要:
A nuclear camera (10) includes a plurality of detector heads (12) which have collimators (14) for fixing the trajectory along which radiation is receivable. A rotating gantry (22) rotates the detector heads around the subject collecting less than 360null of data, e.g., 204null of data. A zero-filling processor (50) generates zero-filled projection views such that the actually collected projection views and the zero-filled projection views span 360null. A smoothing processor (56) smooths an interface between the zero-filled and actually collected projection views. The zero-tilled and smoothed views are Fourier transformed (60) into frequency space, filtered with a stationary deconvolution function (62), and Fourier transformed (64) back into real space. The resolution recovered projection data sets in real space are reconstructed by a reconstruction processor (68) into a three-dimensional image representation for storage in an image memory (70).
摘要:
A magnetic resonance angiographic method includes acquiring (70) high resolution volume image data comprising data (74) corresponding to a plurality of high resolution image slices, and acquiring (72) data corresponding to at least one vessel identification image slice (76), said acquired data having selectively enhanced contrast for one of arteries and veins. A high resolution volume image representation (80) is reconstructed from the acquired high resolution volume image data (74). At least one vessel identification slice image representation (82) is reconstructed from the acquired data corresponding to at least one vessel identification image slice (76). At least one of an artery starting point (86) and a vein starting point (88) is identified based on the vessel identification slice image representation (82). Preferably, the method further includes defining (124) an initial surface that encloses the at least one starting point (126), and iteratively growing (128) the initial surface (126) until the surface essentially coincides with the boundaries of the vascular system.
摘要:
A magnetic resonance imaging method includes acquiring a baseline magnetic resonance image of a region of interest in the absence of a contrast agent and simulating an increase in image intensity of a subregion of interest within the region of interest which is subject to increased image intensity in the presence of a contrast agent. The magnetic resonance k-space signal intensity is correlated with contrast agent concentration in the subregion and a contrast agent is administered to the subject. As k-space data for the region of interest is acquired, the signal intensity is monitored to derive contrast agent concentration information. When the peak contrast agent concentration is detected from the monitored k-space data signal intensity, the phase encoding is adjusted so that k-space data with zero phase encoding is acquired. In a further aspect, a magnetic resonance imaging apparatus is also provided.