摘要:
A system for reverse circulation in a wellbore includes equipment for supplying drilling fluid into the wellbore bit via at least an annulus of the wellbore and returning the drilling fluid to a surface location via at least a bore of a wellbore tubular. The system also includes devices for controlling the annulus pressure associated with this reverse circulation. An active pressure differential device may increase the pressure wellbore annulus to at least partially offset a circulating pressure loss. Alternatively, the system may include devices for decreasing the pressure in the annulus of the wellbore.
摘要:
An apparatus for generating seismic body waves in a hydrocarbon reservoir includes a closed-loop borehole source having a resonant cavity for generating resonant energy, a drive source and a control unit. The drive source injects pressure pulses to the resonant cavity at a predetermined or selectable pressure and frequency. The fluid circulates between the cavity and the drive source in a closed-loop fashion. In another embodiment, the borehole source utilizes a smart or controllable material that is responsive to an applied excitation field. The cavity includes an excitation coil for providing an excitation field that changes a material property of the smart fluid. The control unit is programmed to adjust operating parameters to produce seismic waves having a selected frequency and amplitude. In one embodiment, a control unit adjusts operating parameters in response to measured parameters of interest or surface commands.
摘要:
A novel well bore drilling system and method utilizes independently deployable multiple tubular strings to drill, line and cement multiple hole sections without intervening trips to the surface. In one embodiment, the drilling system includes two or more independent, telescoping, tubular members that form a nested tubular assembly and one or more sensors disposed on the nested tubular assembly. The nested tubular string is deployed in the wellbore in conjunction with a Bottom Hole Assembly (BHA). In some embodiments, a drilling motor for rotating a drill bit is also positioned in the tubular assembly. The sensors can be disposed in a stator of the drilling motor or adjacent the motor. Also, in embodiments, the sensors can be positioned on extensible members that can position the sensor or sensors adjacent the wellbore wall.
摘要:
An active vibration control device improves drilling by actively applying a dampening profile and/or a controlled vibration to a drill string and/or bottomhole assembly (BHA). Embodiments of the present invention control the behavior of a drill string and/or BHA in order to prevent or minimize the occurrence of harmful drill string/BHA motion and/or to apply a vibration to the drill string/BHA that improves one or more aspects of the drilling process. Measurements of one or more selected parameters of interest are processed to determine whether the undesirable vibration or motion is present in the drill string or BHA and/or whether the drill string and/or BHA operation can be improved by the application of a controlled vibration. If either or both conditions are detected, corrective action is formulated and appropriate control signals are transmitted to one or more devices in the drill string and/or BHA.
摘要:
A drilling system includes a steerable bottomhole assembly (BHA) having a steering unit and a control unit that provide dynamic control of drill bit orientation or tilt. Exemplary steering units can adjust bit orientation at a rate that approaches or exceeds the rotational speed of the drill string or drill bit, can include a dynamically adjustable articulated joint having a plurality of elements that deform in response to an excitation signal, can include adjustable independently rotatable rings for selectively tilting the bit, and/or can include a plurality of selectively extensible force pads. The force pads are actuated by a shape change material that deforms in response to an excitation signal. A method of directional drilling includes continuously cycling the position of the steering unit based upon the rotational speed of the drill string and/or drill bit and with reference to an external reference point.
摘要:
Methods and control systems are provided for a wellbore drilling system having an active differential pressure device (APD device) in fluid communication with a returning fluid. The APD Device creates a differential pressure across the device, which reduces the pressure below or downhole of the device. In embodiments, a control unit controls the APD Device in real time via a data transmission system. In one arrangement, the data transmission system includes data links formed by conductors associated with the drill string. The conductors, which may include electrical wires and/or fiber optic bundles, couple the control unit to the APD Device and other downhole tools such as sensors. In other arrangements, the data link can include data transmission stations that use acoustic, EM, and/or RF signals to transfer data. In still other embodiments, a mud pulse telemetry system can be used in transfer data and command signals.
摘要:
Gas hydrates, particularly natural gas hydrates e.g. methane hydrates, may be formed and controlled within conduits and vessels by imparting energy to gas and water, for instance using agitation or vibration. The systems and methods allow for improved flow characteristics for fluids containing the gases, e.g. hydrocarbon fluids being transported, and for improved overall efficiencies. The gas and water within a gas flow path may be perturbed or agitated to initiate formation of relatively small hydrate particles. The hydrate particles continue to form as long as energy is imparted and water and hydrate guest molecules are available. High amplitude agitation of the gas and water will repeatedly break up agglomerated hydrate particles that form and encourage the formation of more and smaller particles. As more hydrate forms in this manner, less and less free water may be available proximate the gas and water contact.
摘要:
A drilling system for drilling subsea wellbores includes a tubing-conveyed drill bit that passes through a subsea wellhead. Surface supplied drilling fluid flows through the tubing, discharges at the drill bit, returns to the wellhead through a wellbore annulus, and flows to the surface via a riser extending from the wellhead. A flow restriction device positioned in the riser restricts the flow of the returning fluid while an active fluid device controllably discharges fluid from a location below to just above the flow restriction device in the riser, thereby controlling bottomhole pressure and equivalent circulating density (“ECD”). Alternatively, the fluid is discharged into a separate return line thereby providing dual gradient drilling while controlling bottomhole pressure and ECD. A controller controls the energy and thus the speed of the pump in response to downhole measurement(s) to maintain the ECD at a predetermined value or within a predetermined range.
摘要:
A novel well bore drilling system and method utilizes independently deployable multiple tubular strings to drill, line and cement multiple hole sections without intervening trips to the surface. In one embodiment, the drilling system includes two or more independent, telescoping, tubular members that form a nested tubular assembly and one or more sensors disposed on the nested tubular assembly. The nested tubular string is deployed in the wellbore in conjunction with a Bottom Hole Assembly (BHA). In some embodiments, a drilling motor for rotating a drill bit is also positioned in the tubular assembly. The sensors can be disposed in a stator of the drilling motor or adjacent the motor. Also, in embodiments, the sensors can be positioned on extensible members that can position the sensor or sensors adjacent the wellbore wall.
摘要:
The present invention provides drilling systems for drilling subsea wellbores. The drilling system includes a tubing that passes through a sea bottom wellhead and carries a drill bit. A drilling fluid system continuously supplies drilling fluid into the tubing, which discharges at the drill bit bottom and returns to the wellhead through an annulus between the tubing and the wellbore carrying the drill cuttings. A fluid return line extending from the wellhead equipment to the drilling vessel transports the returning fluid to the surface. In a riserless arrangement, the return fluid line is separate and spaced apart from the tubing. In a system using a riser, the return fluid line may be the riser or a separate line carried by the riser. The tubing may be coiled tubing with a drilling motor in the bottom hole assembly driving the drill bit. A suction pump coupled to the annulus is used to control the bottom hole pressure during drilling operations, making it possible to use heavier drilling muds and drill to greater depths than would be possible without the suction pump. An optional delivery system continuously injects a flowable material, whose fluid density is less than the density of the drilling fluid, into the returning fluid at one or more suitable locations the rate of such lighter material can be controlled to provide supplementary regulation of the pressure. Various pressure, temperature, flow rate and kick sensors included in the drilling system provide signals to a controller that controls the suction pump, the surface mud pump, a number of flow control devices, and the optional delivery system.