摘要:
A magnetic sensor having no sensitivity differences between sensitivity axes, and an easy manufacturing method therefor are provided. The method includes a process of forming first stacked films for a magnetoresistive element on a substrate. This element has a sensitivity axis in a certain direction and includes a self-pinned ferromagnetic pinned layer in which first and second ferromagnetic films are antiferromagnetically coupled through an antiparallel coupling layer, a nonmagnetic intermediate layer, and a soft magnetic free layer. The method further includes a process of removing a region of the first stacked films from the substrate. The remaining region of the films includes at least a region to be left to form the element. The method furthermore includes a process of forming second stacked films for a magnetoresistive element, which has a sensitivity axis in a direction different from the certain direction and has the same structure, on the exposed substrate.
摘要:
A magnetic detection device includes a layered film including a self-pinned magnetic layer, a free magnetic layer, a nonmagnetic material layer disposed between the pinned magnetic layer and the free magnetic layer, and a top capping layer. The pinned magnetic layer includes a first magnetic layer, a second magnetic layer, and a nonmagnetic intermediate layer disposed therebetween. A first magnetization of the first magnetic layer is pinned in antiparallel with a second magnetization of the second magnetic layer. The capping layer is formed of tantalum, and an as-deposited thickness of the capping layer is 55 Å or more.
摘要:
An underlying layer is composed of Co—Fe—B that is an amorphous magnetic material. Thus, the upper surface of the underlying layer can be taken as a lower shield layer-side reference position for obtaining a gap length (GL) between upper and lower shields, resulting in a narrower gap than before. In addition, since the underlying layer has an amorphous structure, the underlying layer does not adversely affect the crystalline orientation of individual layers to be formed thereon, and the surface of the underlying layer has good planarizability. Accordingly, PW50 (half-amplitude pulse width) and SN ratio can be improved more than before without causing a decrease in rate of change in resistance (Δ R/R) or the like, thereby achieving a structure suitable for increasing recording density.
摘要翻译:下层由作为非晶磁性材料的Co-Fe-B组成。 因此,可以将下层的上表面作为下屏蔽层侧参考位置,以获得上屏蔽和下屏蔽之间的间隙长度(GL),导致与之前的间隙较窄。 此外,由于底层具有非晶结构,所以下层不会对要在其上形成的各层的结晶取向产生不利影响,并且下层的表面具有良好的平坦化性。 因此,PW50(半幅度脉冲宽度)和SN比可以比以前更多地改善,而不会导致电阻变化率(&Dgr; R / R)等的降低,从而实现适于提高记录密度的结构。
摘要:
A second fixed magnetic layer is formed of a CoFeB layer of CoFeB and an interface layer of CoFe or Co provided in that order from the bottom. An insulating barrier layer composed of Al—O is formed on the second fixed magnetic layer. When a lamination structure composed of CoFeB/CoFe/Al—O is formed as described above, a low RA and a high rate of change in resistance (ΔR/R) can be simultaneously obtained. In addition, variations in RA and rate of change in resistance (ΔR/R) can be suppressed as compared to that in the past.
摘要:
An underlying layer is composed of Co—Fe—B that is an amorphous magnetic material. Thus, the upper surface of the underlying layer can be taken as a lower shield layer-side reference position for obtaining a gap length (GL) between upper and lower shields, resulting in a narrower gap than before. In addition, since the underlying layer has an amorphous structure, the underlying layer does not adversely affect the crystalline orientation of individual layers to be formed thereon, and the surface of the underlying layer has good planarizability. Accordingly, PW50 (half-amplitude pulse width) and SN ratio can be improved more than before without causing a decrease in rate of change in resistance (Δ R/R) or the like, thereby achieving a structure suitable for increasing recording density.
摘要:
A magnetic sensor having no sensitivity differences between sensitivity axes, and an easy manufacturing method therefor are provided. The method includes a process of forming first stacked films for a magnetoresistive element on a substrate. This element has a sensitivity axis in a certain direction and includes a self-pinned ferromagnetic pinned layer in which first and second ferromagnetic films are antiferromagnetically coupled through an antiparallel coupling layer, a nonmagnetic intermediate layer, and a soft magnetic free layer. The method further includes a process of removing a region of the first stacked films from the substrate. The remaining region of the films includes at least a region to be left to form the element. The method furthermore includes a process of forming second stacked films for a magnetoresistive element, which has a sensitivity axis in a direction different from the certain direction and has the same structure, on the exposed substrate.
摘要:
The invention provides a magnetoresistive element including a seed layer having a flat surface, which makes it possible to improve the flatness of all of the elements. A seed layer is formed in a two-layer structure of a first seed layer that is formed on a lower shield layer and a second seed layer that is formed underneath an anti-ferromagnetic layer, and the second seed layer is formed of ruthenium (Ru). According to this structure, the flatness of the surface of the seed layer is improved, which makes it possible to improve the flatness of interfaces between layers of an element formed on the seed layer. As a result, it is possible to manufacture a magnetoresistive element having a high dielectric breakdown voltage and high operational reliability.
摘要:
First magnetoresistive effect elements and second magnetoresistive effect elements and are formed on the same substrate. A pinned magnetic layer of each of the first magnetoresistive effect elements has a three-layer laminated ferrimagnetic structure including magnetic layers. A pinned magnetic layer of each of the second magnetoresistive effect elements has a two-layer laminated ferrimagnetic structure including magnetic layers. The magnetization direction of the third magnetic layer of each of the magnetoresistive effect elements is antiparallel to the magnetization direction of the second magnetic layer of each of the second magnetoresistive effect elements.